Neurodegeneration and Neuroinflammation in Diabetic Retinopathy: Potential Approaches to Delay Neuronal Loss
نویسندگان
چکیده
In spite of the extensive research the complex pathogenesis of diabetic retinopathy (DR) has not been fully elucidated. For many years it has been thought that diabetic retinopathy manifests only with microangiopathic lesions, which are totally responsible for the loss of vision in diabetic patients. In view of the current knowledge on the microangiopathic changes in the fundus of the eye, diabetic retinopathy is perceived as a neurodegenerative disease. Several clinical tools are available to detect neuronal dysfunction at early stages of diabetes. Many functional changes in the retina can be identified before vascular pathology develops, suggesting that they result from a direct effect of diabetes on the neural retina. In the course of diabetes there is a chronic loss of retinal neurons due to increased frequency of apoptosis. The neuronal apoptosis begins very early in the course of diabetes. This observation has led to suggestions that precautions against DR should be implemented immediately after diabetes is diagnosed. Neurodegeneration cannot be reversed; therefore treatments preventing neuronal cell loss in the retina need to be developed to protect diabetic patients. This review is an attempt to summarize what is currently known about the mechanisms of neuronal apoptosis in the context of diabetic retinopathy and vascular degeneration as well as about potential treatments of DR.
منابع مشابه
P 97: Neurodegeneration Induced by Tau protein
Tau is one of several types of microtubule-associated proteins (MAPs), responsible for the assembly and stability of microtubule networks that is present only in neurons and predominantly localized in axons which its functions are tightly regulated by phosphorylation. Via as yet unknown mechanisms, tau becomes hyperphosphorylated and accompanies with neuronal degeneration, loss of synapses...
متن کاملDalteparin as a Novel Therapeutic Agent to Prevent Diabetic Encephalopathy by Targeting Oxidative Stress and Inflammation
Introduction: Hepcidin is the principal modulator of systemic iron metabolism, and its role in the brain has been clarified recently. Studies have shown hepcidin plays an important role for in neuronal iron load and inflammation. This is of significance because neuronal iron load and inflammation are pathophysiological processes that have been highly linked to neurodegeneration. Moreover, the a...
متن کاملO 3:Therapeutic Potential of a Novel NMDA Receptor Subunit 2B Antagonist in a Mouse Model of Autoimmune Neuroinflammation
Glutamate-mediated excitotoxicity and neurodegeneration have been shown as pathophysiological hallmarks of multiple sclerosis (MS) and other autoimmune inflammatory CNS disorders. N‑Methyl‑D‑Aspartate (NMDA) receptors play a pivotal role in the mediation of neuronal glutamate excitotoxicity leading to cellular damage and apoptotic cell death. Current treatment approaches targeting glutamate exc...
متن کاملThe Lentiviral Vector Pseudotyped by Modified Rabies Glycoprotein Does Not Cause Reactive Gliosis and Neurodegeneration in Rat Hippocampus
Background: A human immunodeficiency virus type 1 (HIV-1)-based lentiviral vector (LV) pseudotyped by a variant of rabies envelope glycoprotein, FUG-B2, has previously been prepared and used in transfection of hippocampal CA1 ("Cornu Ammonis" area 1) neurons. This study aimed to verify reactive gliosis and neuronal damage after injection of the vector into the rat hippocampus. Methods: HEK 293T...
متن کاملThe Role of Microglia in Diabetic Retinopathy: Inflammation, Microvasculature Defects and Neurodegeneration
Diabetic retinopathy is a common complication of diabetes mellitus, which appears in one third of all diabetic patients and is a prominent cause of vision loss. First discovered as a microvascular disease, intensive research in the field identified inflammation and neurodegeneration to be part of diabetic retinopathy. Microglia, the resident monocytes of the retina, are activated due to a compl...
متن کامل