Dysfunctional ryanodine receptor and cardiac hypertrophy: role of signaling molecules.
نویسندگان
چکیده
Mice with three amino acid mutations in the calmodulin binding domain of type-2 ryanodine receptor ion channel (Ryr2(ADA/ADA) mice) have impaired intracellular Ca(2+) handling and cardiac hypertrophy with death at an early age. In this report, the role of signaling molecules implicated in cardiac hypertrophy of Ryr2(ADA/ADA) mice was investigated. Calcineurin A-β (CNA-β) and nuclear factor of activated T cell (NFAT) signaling were monitored in mice carrying either luciferase transgene driven by NFAT-dependent promoter or knockout of CNA-β. NFAT transcriptional activity in Ryr2(ADA/ADA) hearts was not markedly upregulated at embryonic day 16.5 compared with wild-type but significantly increased at postnatal days 1 and 10. Ablation of CNA-β extended the life span of Ryr2(ADA/ADA) mice and enhanced cardiac function without improving sarcoplasmic reticulum Ca(2+) handling or suppressing the expression of genes implicated in cardiac hypertrophy. Embryonic day 16.5 Ryr2(ADA/ADA) mice had normal heart weights with no major changes in Akt1 and class II histone deacetylase phosphorylation and myocyte enhancer factor-2 activity. In contrast, phosphorylation levels of Erk1/2, p90 ribosomal S6 kinases (p90RSKs), and GSK-3β were increased in hearts of embryonic day 16.5 homozygous mutant mice. The results indicate that an impaired calmodulin regulation of RyR2 was neither associated with an altered CNA-β/NFAT, class II histone deacetylase (HDAC)/MEF2, nor Akt signaling in embryonic day 16.5 hearts; rather increased Erk1/2 and p90RSK phosphorylation levels likely leading to reduced GSK-3β activity were found to precede development of cardiac hypertrophy in mice expressing dysfunctional ryanodine receptor ion channel.
منابع مشابه
mTOR signaling in mice with dysfunctional cardiac ryanodine receptor ion channel
Simultaneous substitution of three amino acid residues in the calmodulin binding domain (W3587A/L3591D/F3603A, ADA) of the cardiac ryanodine receptor ion channel (RyR2) impairs calmodulin inhibition of RyR2 and causes cardiac hypertrophy and early death of Ryr2ADA/ADA mice. To determine the physiological significance of growth promoting signaling molecules, the protein and phosphorylation level...
متن کاملInhibition of CaMKII Does Not Attenuate Cardiac Hypertrophy in Mice with Dysfunctional Ryanodine Receptor
In cardiac muscle, the release of calcium ions from the sarcoplasmic reticulum through ryanodine receptor ion channels (RyR2s) leads to muscle contraction. RyR2 is negatively regulated by calmodulin (CaM) and by phosphorylation of Ca2+/CaM-dependent protein kinase II (CaMKII). Substitution of three amino acid residues in the CaM binding domain of RyR2 (RyR2-W3587A/L3591D/F3603A, RyR2ADA) impair...
متن کاملبررسی اثر مهار گیرنده رایانیدینی(RYR) بر فعالیت پیسمیکری
Background & Aim: The role of ryanodine receptor(RYR) on pacemaker activity of heart cells is controversial. Some investigators have suggested that it is obligatory, while others believe it is partial and not obligatory. The principle aim of this study was once more to characterize the role of ryanodine receptor(RyR) on the pacemaker activity of the sinoatrial node(SAN) and the atrioventric...
متن کاملCompartmentalization Role of A-Kinase Anchoring Proteins (AKAPs) in Mediating Protein Kinase A (PKA) Signaling and Cardiomyocyte Hypertrophy
The Beta-adrenergic receptors (β-ARs) stimulation enhances contractility through protein kinase-A (PKA) substrate phosphorylation. This PKA signaling is conferred in part by PKA binding to A-kinase anchoring proteins (AKAPs). AKAPs coordinate multi-protein signaling networks that are targeted to specific intracellular locations, resulting in the localization of enzyme activity and transmitting ...
متن کاملThe mAKAP complex participates in the induction of cardiac myocyte hypertrophy by adrenergic receptor signaling.
Maladaptive cardiac hypertrophy can progress to congestive heart failure, a leading cause of morbidity and mortality in the United States. A better understanding of the intracellular signal transduction network that controls myocyte cell growth may suggest new therapeutic directions. mAKAP is a scaffold protein that has recently been shown to coordinate signal transduction enzymes important for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 300 6 شماره
صفحات -
تاریخ انتشار 2011