Contrasting Life Strategies of Viruses That Infect Photo- and Heterotrophic Bacteria, as Revealed by Viral Tagging
نویسندگان
چکیده
Ocean viruses are ubiquitous and abundant and play important roles in global biogeochemical cycles by means of their mortality, horizontal gene transfer, and manipulation of host metabolism. However, the obstacles involved in linking viruses to their hosts in a high-throughput manner bottlenecks our ability to understand virus-host interactions in complex communities. We have developed a method called viral tagging (VT), which combines mixtures of host cells and fluorescent viruses with flow cytometry. We investigated multiple viruses which infect each of two model marine bacteria that represent the slow-growing, photoautotrophic genus Synechococcus (Cyanobacteria) and the fast-growing, heterotrophic genus Pseudoalteromonas (Gammaproteobacteria). Overall, viral tagging results for viral infection were consistent with plaque and liquid infection assays for cyanobacterial myo-, podo- and siphoviruses and some (myo- and podoviruses) but not all (four siphoviruses) heterotrophic bacterial viruses. Virus-tagged Pseudoalteromonas organisms were proportional to the added viruses under varied infection conditions (virus-bacterium ratios), while no more than 50% of the Synechococcus organisms were virus tagged even at viral abundances that exceeded (5 to 10×) that of their hosts. Further, we found that host growth phase minimally impacts the fraction of virus-tagged Synechococcus organisms while greatly affecting phage adsorption to Pseudoalteromonas. Together these findings suggest that at least two contrasting viral life strategies exist in the oceans and that they likely reflect adaptation to their host microbes. Looking forward to the point at which the virus-tagging signature is well understood (e.g., for Synechococcus), application to natural communities should begin to provide population genomic data at the proper scale for predictively modeling two of the most abundant biological entities on Earth. Viral study suffers from an inability to link viruses to hosts en masse, and yet delineating "who infects whom" is fundamental to viral ecology and predictive modeling. This article describes viral tagging-a high-throughput method to investigate virus-host interactions by combining the fluorescent labeling of viruses for "tagging" host cells that can be analyzed and sorted using flow cytometry. Two cultivated hosts (the cyanobacterium Synechococcus and the gammaproteobacterium Pseudoalteromonas) and their viruses (podo-, myo-, and siphoviruses) were investigated to validate the method. These lab-based experiments indicate that for most virus-host pairings, VT (viral tagging) adsorption is equivalent to traditional infection by liquid and plaque assays, with the exceptions being confined to promiscuous adsorption by Pseudoalteromonas siphoviruses. These experiments also reveal variability in life strategies across these oceanic virus-host systems with respect to infection conditions and host growth status, which highlights the need for further model system characterization to break open this virus-host interaction "black box."
منابع مشابه
Evolution of viruses and cells: do we need a fourth domain of life to explain the origin of eukaryotes?
The recent discovery of diverse very large viruses, such as the mimivirus, has fostered a profusion of hypotheses positing that these viruses define a new domain of life together with the three cellular ones (Archaea, Bacteria and Eucarya). It has also been speculated that they have played a key role in the origin of eukaryotes as donors of important genes or even as the structures at the origi...
متن کاملMicrobial interactions in marine water amended by eroded benthic biofilm: A case study from an intertidal mudflat
In shallow macrotidal ecosystems with large intertidal mudflats, the sediment-water coupling plays a crucial role in structuring the pelagic microbial food web functioning, since inorganic and organic matter and microbial components (viruses and microbes) of the microphytobenthic biofilm can be suspended toward the water column. Two experimental bioassays were conducted in March and July 2008 t...
متن کاملEffects of viruses on bacterial functions under contrasting nutritional conditions for four species of bacteria isolated from Hong Kong waters
Free living viruses are ubiquitous in marine waters and concentrations are usually several times higher than the bacterial abundance. These viruses are capable of lysing host bacteria and therefore, play an important role in the microbial loop in oligotrophic waters. However, few studies have been conducted to compare the role of viruses in regulating bacterial abundance and heterotrophic activ...
متن کاملGrazer and viral impacts on microbial growth and mortality in the southern California Current Ecosystem
Protistan grazers and viruses are major agents of mortality in marine microbial communities with substantially different implications for food-web dynamics, carbon cycling and diversity maintenance. While grazers and viruses are typically studied independently, their impacts on microbial communities may be complicated by direct and indirect interactions of their mortality effects. Using a modif...
متن کاملStrong, weak, and missing links in a microbial community of the N.W. Mediterranean Sea.
Planktonic microbial communities often appear stable over periods of days and thus tight links are assumed to exist between different functional groups (i.e. producers and consumers). We examined these links by characterizing short-term temporal correspondences in the concentrations and activities of microbial groups sampled from 1 m depth, at a coastal site of the N.W. Mediterranean Sea, in Se...
متن کامل