Myelokathexis, a congenital disorder of severe neutropenia characterized by accelerated apoptosis and defective expression of bcl-x in neutrophil precursors.

نویسندگان

  • A A Aprikyan
  • W C Liles
  • J R Park
  • M Jonas
  • E Y Chi
  • D C Dale
چکیده

Myelokathexis is a congenital disorder that causes severe chronic leukopenia and neutropenia. Characteristic findings include degenerative changes and hypersegmentation of mature neutrophils and hyperplasia of bone marrow myeloid cells. The associated neutropenia can be partially corrected by treatment with granulocyte colony-stimulating factor (G-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF). These features led us to propose that accelerated apoptosis of neutrophil precursors might account for the neutropenic phenotype. Blood and bone marrow aspirates were obtained from 4 patients (2 unrelated families) with myelokathexis before G-CSF therapy and from 2 of the affected persons after G-CSF therapy (1 microg/kg per day subcutaneously for 3 weeks). Bone marrow was fractionated using immunomagnetic bead cell sorting into CD34(+), CD33(+)/CD34(-), and CD15(+)/CD34(-)/CD33(- )cell populations. Examination of these cells by flow cytometry and electron microscopy revealed abundant apoptosis in the CD15(+) neutrophil precursor population, characterized by enhanced annexin-V binding, extensive membrane blebbing, condensation of heterochromatin, and cell fragmentation. Colony-forming assays demonstrated significant reduction in a proportion of bone marrow myeloid-committed progenitor cells. Immunohistochemical analysis revealed a selective decrease in bcl-x, but not bcl-2, expression in the CD15(+)/CD34(-)/CD33(-)cell population compared with similar subpopulations of control bone marrow-derived myeloid precursors. After G-CSF therapy, apoptotic features of patients' bone marrow cells were substantially reduced, and the absolute neutrophil counts (ANC) and expression of bcl-x in CD15(+)/CD34(-)/CD33(-)cells increased. The authors concluded that myelokathexis is a disease characterized by the accelerated apoptosis of granulocytes and the depressed expression of bcl-x in bone marrow-derived granulocyte precursor cells. These abnormalities are partially corrected by the in vivo administration of G-CSF. (Blood. 2000;95:320-327)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mice expressing a neutrophil elastase mutation derived from patients with severe congenital neutropenia have normal granulopoiesis.

Severe congenital neutropenia (SCN) is a syndrome characterized by an isolated block in granulocytic differentiation and an increased risk of developing acute myeloid leukemia (AML). Recent studies have demonstrated that the majority of patients with SCN and cyclic neutropenia, a related disorder characterized by periodic oscillations in the number of circulating neutrophils, have heterozygous ...

متن کامل

Mutations of the ELA2 gene found in patients with severe congenital neutropenia induce the unfolded protein response and cellular apoptosis.

Severe congenital neutropenia (SCN) is an inborn disorder of granulopoiesis. Mutations of the ELA2 gene encoding neutrophil elastase (NE) are responsible for most cases of SCN and cyclic neutropenia (CN), a related but milder disorder of granulopoiesis. However, the mechanisms by which these mutations disrupt granulopoiesis are unclear. We hypothesize that the ELA2 mutations result in the produ...

متن کامل

A clinical and molecular review of ubiquitous glucose-6-phosphatase deficiency caused by G6PC3 mutations

The G6PC3 gene encodes the ubiquitously expressed glucose-6-phosphatase enzyme (G-6-Pase β or G-6-Pase 3 or G6PC3). Bi-allelic G6PC3 mutations cause a multi-system autosomal recessive disorder of G6PC3 deficiency (also called severe congenital neutropenia type 4, MIM 612541). To date, at least 57 patients with G6PC3 deficiency have been described in the literature.G6PC3 deficiency is characteri...

متن کامل

Impaired survival of bone marrow hematopoietic progenitor cells in cyclic neutropenia.

Cyclic neutropenia (CN) is a congenital hematopoietic disorder characterized by remarkably regular oscillations of blood neutrophils from near normal to extremely low levels at 21-day intervals. Recurring episodes of severe neutropenia lead to repetitive and sometimes life-threatening infections. To investigate the cellular mechanism of CN, the ultrastructure and the proliferative and survival ...

متن کامل

A report of WHIM syndrome (myelokathexis) - clinical features and bone marrow morphology

DOI: 10.5581/1516-8484.20110105 Academia de Ciência e Tecnologia – AC & T, São José do Rio Preto, SP, Brazil Flavio Augusto Naoum Warts, Hypogammaglobulinemia, Infections and Myelokathexis (WHIM) syndrome is a very rare form of severe congenital neutropenia with approximately only 40 cases reported until now. The name of this syndrome, WHIM, describes its main features that include, but are not...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 95 1  شماره 

صفحات  -

تاریخ انتشار 2000