Computational study of heterojunction graphene nanoribbon tunneling transistors with p-d orbital tight-binding method
نویسندگان
چکیده
Computational study of heterojunction graphene nanoribbon tunneling transistors with p-d orbital tight-binding method" (2014).
منابع مشابه
A Computational Study on the Performance of Graphene Nanoribbon Field Effect Transistor
Despite the simplicity of the hexagonal graphene structure formed by carbon atoms, the electronic behavior shows fascinating properties, giving high expectation for the possible applications of graphene in the field. The Graphene Nano-Ribbon Field Effect Transistor (GNRFET) is an emerging technology that received much attention in recent years. In this paper, we investigate the device performan...
متن کاملComputational study of bandgap-engineered Graphene nano ribbon tunneling field-effect transistor (BE-GNR-TFET)
By applying tensile local uniaxial strain on 5 nm of drain region and compressive local uniaxial strain on 2.5 nm of source and 2.5 nm of channel regions of graphene nanoribbon tunneling field-effect transistor (GNR-TFET), we propose a new bandgap-engineered (BE) GNR-TFET. Simulation of the suggested device is done based on non-equilibrium Green’s function (NEGF) method by a mode-space approach...
متن کاملPerformance analysis of statistical samples of graphene nanoribbon tunneling transistors with line edge roughness
Performance analysis of statistical samples of graphene nanoribbon tunneling transistors with line edge roughness" (2009). Birck and NCN Publications. Paper 392.
متن کاملNon-Linear Temperature Dependence in Graphene Nanoribbon Tunneling Transistors
It is usually assumed that tunneling current is fairly independent of temperature. By performing an atomistic transport simulation, we show, to the contrary, that the subthreshold tunneling current in a graphene nanoribbon (GNR) band-to-band tunneling transistor (TFET) should show significant and nonlinear temperature dependence. Furthermore, the nature of this non-linearity changes as a functi...
متن کاملTrilayer Graphene Nanoribbon Field Effect Transistor Analytical Model
The approaching scaling of Field Effect Transistors (FETs) in nanometer scale assures the smaller dimension, low-power consumption, very large computing power, low energy delay product and high density as well as high speed in processor. Trilayer graphene nanoribbon with different stacking arrangements (ABA and ABC) indicates different electrical properties. Based on this theory, ABA-stacked tr...
متن کامل