Introduction to Finite Element Methods on Elliptic Equations
نویسنده
چکیده
1. Poisson Equation 1 2. Outline of Topics 3 2.1. Finite Difference Method 3 2.2. Finite Element Method 3 2.3. Finite Volume Method 3 2.4. Sobolev Spaces and Theory on Elliptic Equations 3 2.5. Iterative Methods: Conjugate Gradient and Multigrid Methods 3 2.6. Nonlinear Elliptic Equations 3 2.7. Fast Multiple Method 3 3. Physical Examples 4 3.1. Gauss’ law and Newtonian gravity 4 3.2. Electrostatics 4 3.3. Heat equation 5 3.4. Poisson-Boltzmann equation 5
منابع مشابه
Buckling Analysis of Rectangular Functionally Graded Plates with an Elliptic Hole Under Thermal Loads
This paper presents thermal buckling analysis of rectangular functionally graded plates (FG plates) with an eccentrically located elliptic cutout. The plate governing equations derived by the first order shear deformation theory (FSDT) and finite element formulation is developed to analyze the plate behavior subjected to a uniform temperature rise across plate thickness. It is assumed that the ...
متن کاملIntroduction to Finite Element Methods
Finite element methods are based on the variational formulation of partial differential equations which only need to compute the gradient of a function. Although unknowns are still associated to nodes, the function composed by piece-wise polynomials on each element and thus the gradient can be computed element-wise. Finite element spaces can thus be constructed on general triangulations and thi...
متن کاملAdaptive Finite Element Methods
Adaptive methods are now widely used in the scientific computation to achieve better accuracy with minimum degree of freedom. In this chapter, we shall briefly survey recent progress on the convergence analysis of adaptive finite element methods (AFEMs) for second order elliptic partial differential equations and refer to Nochetto, Siebert and Veeser [14] for a detailed introduction to the theo...
متن کاملPrimal Hybrid Finite Element Methods for 2nd Order Elliptic Equations
The paper is devoted to the construction of finite element methods for 2nd order elliptic equations based on a primal hybrid variational principle. Optimal error bounds are proved. As a corollary, we obtain a general analysis of nonconforming finite element methods.
متن کاملFinite Element Methods with Coordinate Charts for Solving Elliptic Equations on Manifolds
We apply finite element methods to elliptic problems on compact Riemannian manifolds. The elliptic equation on manifolds is reduced to coupled equations on Euclidean spaces by coordinate charts. The advantage of this strategy is to avoid global triangulations on curved manifolds in the finite element method. The resulting finite element problem can be solved globally, or locally by nonoverlappi...
متن کامل