A population of prenatally generated cells in the rat paleocortex maintains an immature neuronal phenotype into adulthood.
نویسندگان
چکیده
New neurons in the adult brain transiently express molecules related to neuronal development, such as the polysialylated form of neural cell adhesion molecule, or doublecortin (DCX). These molecules are also expressed by a cell population in the rat paleocortex layer II, whose origin, phenotype, and function are not clearly understood. We have classified most of these cells as a new cell type termed tangled cell. Some cells with the morphology of semilunar-pyramidal transitional neurons were also found among this population, as well as some scarce cells resembling semilunar, pyramidal. and fusiform neurons. We have found that none of these cells in layer II express markers of glial cells, mature, inhibitory, or principal neurons. They appear to be in a prolonged immature state, confirmed by the coexpression of DCX, TOAD/Ulip/CRMP-4, A3 subunit of the cyclic nucleotide-gated channel, or phosphorylated cyclic adenosine monophosphate response element-binding protein. Moreover, most of them lack synaptic contacts, are covered by astroglial lamellae, and fail to express cellular activity markers, such as c-Fos or Arc, and N-methyl-d-aspartate or glucocorticoid receptors. We have found that none of these cells appear to be generated during adulthood or early youth and that most of them have been generated during embryonic development, mainly in E15.5.
منابع مشابه
The effect of prenatal restraint stress on the number and size of neurons in the rat hippocampal subdivisions
Animal studies have shown that prenatal stress is able to induce long-lasting neurobiological and behavioral alterations in adult offspring. In spite of the facts that hippocampus is sensitive to early developmental influences and its known functional importance in learning and memory, few data are available on the effect of prenatal stress on the structure of hippocampus. Therefore, this study...
متن کاملThe Effect of Prenatal Exposure to Restraint Stress on Hippocampal Granule Neurons of Adult Rat Offspring
Objective(s) It is well known that prenatal stresses (PS) induce a variety of neurobiological and behavioral alterations, some of them involving the hippocampal formation. This study aimed to determine whether restraint stress influences the neuronal volume and number of granule cells in the hippocampus of adult rat offspring. Materials and Methods Ten Wistar pregnant rats were randomly divi...
متن کاملThe effect of prenatal restraint stress on the number and size of neurons in the rat hippocampal subdivisions
Animal studies have shown that prenatal stress is able to induce long-lasting neurobiological and behavioral alterations in adult offspring. In spite of the facts that hippocampus is sensitive to early developmental influences and its known functional importance in learning and memory, few data are available on the effect of prenatal stress on the structure of hippocampus. Therefore, this study...
متن کاملPSA-NCAM is Expressed in Immature, but not Recently Generated, Neurons in the Adult Cat Cerebral Cortex Layer II
Neuronal production persists during adulthood in the dentate gyrus and the olfactory bulb, where substantial numbers of immature neurons can be found. These cells can also be found in the paleocortex layer II of adult rodents, but in this case most of them have been generated during embryogenesis. Recent reports have described the presence of similar cells, with a wider distribution, in the cer...
متن کاملبررسی اثر لیتیوم کلراید در القای سلولهای استرومایی مغز استخوان به سلولهایی با فنوتیپ عصبی
Background & Objective : Bone marrow stromal cells (BMSCs) are a kind of stem cells with high pluripotency. The BMSCs can differentiate into mesodermal and non mesodermal cells. Because of availability of them, they are a suitable source of adult stem cells for cell therapy. Some inducers were used to differentiate stem cells into neural phenotype, such: retinoic acid, dimethyl sulfoxide, dep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 18 10 شماره
صفحات -
تاریخ انتشار 2008