Preparation of Inert Polystyrene Latex Particles as MicroRNA Delivery Vectors by Surfactant-Free RAFT Emulsion Polymerization.

نویسندگان

  • Cheuk Ka Poon
  • Owen Tang
  • Xin-Ming Chen
  • Binh T T Pham
  • Guillaume Gody
  • Carol A Pollock
  • Brian S Hawkett
  • Sébastien Perrier
چکیده

We present the preparation of 11 nm polyacrylamide-stabilized polystyrene latex particles for conjugation to a microRNA model by surfactant-free RAFT emulsion polymerization. Our synthetic strategy involved the preparation of amphiphilic polyacrylamide-block-polystyrene copolymers, which were able to self-assemble into polymeric micelles and "grow" into polystyrene latex particles. The surface of these sterically stabilized particles was postmodified with a disulfide-bearing linker for the attachment of the microRNA model, which can be released from the latex particles under reducing conditions. These nanoparticles offer the advantage of ease of preparation via a scaleable process, and the versatility of their synthesis makes them adaptable to a range of applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pickering Emulsion Polymerization of Styrene-co-butyl Acrylate Nanoparticles by Using Cloisite Na+ as Surfactant

Cloisite Na+was used as a solid surfactant (stabilizer) in Pickering emulsion polymerization of styrene-co-butyl acrylate in presence of oil soluble initiator, azobisisobutyronitrile (AIBN) and water soluble initiator, potassium persulfate (KPS). Fourier transform infrared (FTIR) spectrum approved the corporation of Cloisite Na+ layers within the polymer matrix. Effect of clay content was a...

متن کامل

Preparation of Emulsifier-Free Polystyrene by Conventional Emulsion Polymerization with a Hydrolysable Emulsifier

An alkali-hydrolysable surfactant, (1-tetradecyloxycarbonylmethyl)trimethylammonium chloride, was used as an emulsifier for emulsion polymerization of styrene in water. The polymerization yielded a high molecular-weight polymer almost quantitatively. Addition of a small amount of NaOH to the resulting latex solution precipitated the polymer immediately. Analysis of the centrifuged solid indicat...

متن کامل

Surfactant-Free RAFT Emulsion Polymerization of Styrene Using Thermoresponsive macroRAFT Agents: Towards Smart Well-Defined Block Copolymers with High Molecular Weights

The combination of reversible addition–fragmentation chain transfer (RAFT) and emulsion polymerization has recently attracted much attention as a synthetic tool for high-molecular-weight block copolymers and their micellar nano-objects. Up to recently, though, the use of thermoresponsive polymers as both macroRAFT agents and latex stabilizers was impossible in aqueous media due to their hydroph...

متن کامل

Colloidosomes from Peroxidized Pickering Emulsions

A new approach to synthesis of cross-linked colloidosomes (microcapsules with a shell from colloidal particles) was developed on the basis of a peroxidized Pickering emulsion (an emulsion stabilized exclusively by peroxidized colloidal particles). Peroxidized latex particles were employed to ensure formation of Pickering emulsion. Free radical polymerization was used to convert droplets of a pe...

متن کامل

Soft and rigid core latex nanoparticles prepared by RAFT-mediated surfactant-free emulsion polymerization for cellulose modification – a comparative study†

Latex nanoparticles comprising cationically charged coronas and hydrophobic cores with different glass transition temperatures (Tg) have been prepared by surfactant-free, RAFT-mediated emulsion polymerization, where the particles form through a polymerization-induced self-assembly (PISA) type mechanism. Poly(2-dimethylaminoethyl methacrylate-co-methacrylic acid) (P(DMAEMA-co-MAA)) was utilized ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomacromolecules

دوره 17 3  شماره 

صفحات  -

تاریخ انتشار 2016