NWNU Minimum Information Recognizing Entailment System for NTCIR-11 RITE-3 Task

نویسندگان

  • Zhichang Zhang
  • Dongren Yao
  • Longlong Mao
  • Songyi Chen
چکیده

This paper describes our work in NTCIR-11 on RITE-3 Binary-class (BC) subtask and Multi-class (MC) subtask in Simplified Chinese. We proposed a textual entailment system using a hybrid approach that integrates many features. The performance of the proposed method in the formal run achieved Macro-F1’s of 59.71% in BC subtask and only 23.19% in MC subtask

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IMTKU Textual Entailment System for Recognizing Inference in Text at NTCIR-11 RITE-VAL

In this paper, we describe the IMTKU (Information Management at TamKang University) textual entailment system for recognizing inference in text at NTCIR-11 RITE-VAL (Recognizing Inference in Text). We proposed a textual entailment system using statistics approach that integrate semantic features and machine learning techniques for recognizing inference in text at NTCIR-11 RITEVAL task. We submi...

متن کامل

IMTKU Textual Entailment System for Recognizing Inference in Text at NTCIR-9 RITE

In this paper, we describe the IMTKU (Information Management at TamKang University) textual entailment system for recognizing inference in text at NTCIR-9 RITE (Recognizing Inference in Text). We proposed a textual entailment system using a hybrid approach that integrate knowledge based and machine learning techniques for recognizing inference in text at NTCIR-9 RITE task. We submitted 3 offici...

متن کامل

IMTKU Textual Entailment System for Recognizing Inference in Text at NTCIR-10 RITE2

In this paper, we describe the IMTKU (Information Management at TamKang University) textual entailment system for recognizing inference in text at NTCIR-10 RITE-2 (Recognizing Inference in Text). We proposed a textual entailment system using a hybrid approach that integrate semantic features and machine learning techniques for recognizing inference in text at NTCIR-10 RITE-2 task. We submitted ...

متن کامل

NAK Team's System for Recognizing Textual Entailment at the NTCIR-11 RITE-VAL Task

The NAK team participated in the NTCIR-11 RITE-VAL task. This paper describes our textual entailment system and discusses the official results. Our system adopts statistical method: classification of the support vector machine (SVM). For Japanese SV subtask, our best result was 63.19 for macro-F1 score and 74.55 for accuracy. For Japanese FV subtask, our best result was 53.07 for macro-F1 score...

متن کامل

ZSWSL Text Entailment Recognizing System at NTCIR-9 RITE Task

This paper describes our system on simplified Chinese textual entailment recognizing RITE task at NTCIR-9. Both lexical and semantic features are extracted using NLP methods. Three classification models are used and compared for the classification task, Rule-based algorithms, SVM and C4.5. C4.5 gives the best result on testing data set. Evaluation at NTCIR-9 RITE shows 72% accuracy on BC subtas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014