Adaptive estimation in circular functional linear models
نویسندگان
چکیده
We consider the problem of estimating the slope parameter in circular functional linear regression, where scalar responses Y1, . . . , Yn are modeled in dependence of 1periodic, second order stationary random functions X1, . . . , Xn. We consider an orthogonal series estimator of the slope function β, by replacing the first m theoretical coefficients of its development in the trigonometric basis by adequate estimators. We propose a model selection procedure for m in a set of admissible values, by defining a contrast function minimized by our estimator and a theoretical penalty function; this first step assumes the degree of ill posedness to be known. Then we generalize the procedure to a random set of admissible m’s and a random penalty function. The resulting estimator is completely data driven and reaches automatically what is known to be the optimal minimax rate of convergence, in term of a general weighted L-risk. This means that we provide adaptive estimators of both β and its derivatives.
منابع مشابه
Neural Network Sensitivity to Inputs and Weights and its Application to Functional Identification of Robotics Manipulators
Neural networks are applied to the system identification problems using adaptive algorithms for either parameter or functional estimation of dynamic systems. In this paper the neural networks' sensitivity to input values and connections' weights, is studied. The Reduction-Sigmoid-Amplification (RSA) neurons are introduced and four different models of neural network architecture are proposed and...
متن کاملComplex dual channel estimation: Cost effective widely linear adaptive filtering
Widely linear estimation for complex-valued data allows for a unified treatment of both second order circular (proper) and non-circular (improper) signals. We propose the complex dual channel (CDC) estimation technique as an alternative to widely linear estimation to both gain further insights into complex valued minimum mean square error (MMSE) estimation and to design computationally efficien...
متن کاملHarmonics Estimation in Power Systems using a Fast Hybrid Algorithm
In this paper a novel hybrid algorithm for harmonics estimation in power systems is proposed. The estimation of the harmonic components is a nonlinear problem due to the nonlinearity of phase of sinusoids in distorted waveforms. Most researchers implemented nonlinear methods to extract the harmonic parameters. However, nonlinear methods for amplitude estimation increase time of convergence. Hen...
متن کاملMaximum Likelihood Estimation of Parameters in Generalized Functional Linear Model
Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to esti...
متن کاملFunctional Adaptive Model Estimation
In this article we are interested in modeling the relationship between a scalar, Y , and a functional predictor, X(t). We introduce a highly flexible approach called ”Functional Adaptive Model Estimation” (FAME) which extends generalized linear models (GLM), generalized additive models (GAM) and projection pursuit regression (PPR) to handle functional predictors. The FAME approach can model any...
متن کامل