Poisoning Effect of SO2 on Honeycomb Cordierite- Based Mn–Ce/Al2O3Catalysts for NO Reduction with NH3 at Low Temperature
نویسندگان
چکیده
Honeycomb cordierite-based Mn–Ce/Al2O3 catalysts were prepared by the impregnation method and used for low-temperature selective catalytic reduction (SCR) of NOx with NH3, with and without SO2 and/or H2O in a homemade fixed-bed tubular reactor. The catalyst reached nearly 80% NOx conversion at 100 ◦C in the absence of SO2. However, SO2 reduces the catalytic activity (80% to 72%) of the honeycomb cordierite-based Mn–Ce/Al2O3 catalysts under identical conditions. This finding demonstrated that the catalyst exhibited high activity at low temperature and excellent SO2 resistance in the presence of 50 ppm SO2. The fresh and sulfated honeycomb cordierite-based Mn–Ce/Al2O3 catalysts were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), N2 adsorption–desorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry and differential thermal analysis (TG-DTA), and Fourier transform infrared (FT-IR) spectroscopy. Characterization results indicated that the deactivation by SO2 was primarily the result of the deposition of ammonium hydrogen sulfate and sulfated CeO2 on the catalyst surface during the SCR process. The formed sulfates depressed the catalytic activity via the blocking of pores and the occupation of active sites. Additionally, the competitive adsorption between SO2 and NH3 always decreased the catalytic activity.
منابع مشابه
Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3.
The catalysts of iron-doped Mn-Ce/TiO2 (Fe-Mn-Ce/TiO2) prepared by sol-gel method were investigated for low temperature selective catalytic reduction (SCR) of NO with NH3. It was found that the NO conversion over Fe-Mn-Ce/TiO2 was obviously improved after iron doping compared with that over Mn-Ce/TiO2. Fe-Mn-Ce/TiO2 with the molar ratio of Fe/Ti = 0.1 exhibited the highest activity. The results...
متن کاملLow temperature selective catalytic reduction of NOx with NH3 over Mn-based catalyst: A review
The removals of NOx by catalytic technology at low temperatures (100–300 °C) for industrial flue gas treatment have received increasing attention. However, the development of low temperature catalysts for selective catalytic reduction (SCR) of NOx with ammonia is still a challenge especially in the presence of SO2. The current status of using Mn-based catalysts for low temperature SCR of NOx wi...
متن کاملLow Temperature Performance of Selective Catalytic Reduction of NO with NH3 under a Concentrated CO2 Atmosphere
Selective catalytic reduction of NOx with NH3 (NH3-SCR) has been widely investigated to reduce NOx emissions from combustion processes, which cause environmental challenges. However, most of the current work on NOx reduction has focused on using feed gas without CO2 or containing small amounts of CO2. In the future, oxy-fuel combustion will play an important role for power generation, and this ...
متن کاملLow-temperature SCR of NO with NH3 over USY-supported manganese oxide-based catalysts
A series of catalysts of manganese oxide, manganese–cerium and iron–manganese oxide supported on USY (ultra-stable Y zeolite) were studied for the low-temperature selective catalytic reduction (SCR) of NO with ammonia in the presence of excess oxygen. It was found that MnOx/USY have high activity and high selectivity to N2 in the temperature range 80–180 8C. The addition of iron and cerium oxid...
متن کاملPromotional Effect of Ce on Iron-Based Catalysts for Selective Catalytic Reduction of NO with NH3
A series of Fe–Ce–Ti catalysts were prepared via co-precipitation method to investigate the effect of doping Ce into Fe–Ti catalysts for selective catalytic reduction of NO with NH3. The NO conversion over Fe–Ce–Ti catalysts was considerably improved after Ce doping compared to that of Fe–Ti catalysts. The Fe(0.2)–Ce(0.4)–Ti catalysts exhibited superior catalytic activity to that of Fe(0.2)–Ti ...
متن کامل