Changing the thickness of two layers: i-ZnO nanorods, p-Cu2O and its influence on the carriers transport mechanism of the p-Cu2O/i-ZnO nanorods/n-IGZO heterojunction

نویسندگان

  • Nguyen Huu Ke
  • Le Thi Tuyet Trinh
  • Pham Kim Phung
  • Phan Thi Kieu Loan
  • Dao Anh Tuan
  • Nguyen Huu Truong
  • Cao Vinh Tran
  • Le Vu Tuan Hung
چکیده

In this study, two layers: i-ZnO nanorods and p-Cu2O were fabricated by electrochemical deposition. The fabricating process was the initial formation of ZnO nanorods layer on the n-IGZO thin film which was prepared by sputtering method, then a p-Cu2O layer was deposited on top of rods to form the p-Cu2O/i-ZnO nanorods/n-ZnO heterojunction. The XRD, SEM, UV-VIS, I-V characteristics methods were used to define structure, optical and electrical properties of these heterojunction layers. The fabricating conditions and thickness of the Cu2O layers significantly affected to the formation, microstructure, electrical and optical properties of the junction. The length of i-ZnO nanorods layer in the structure of the heterojunction has strongly affected to the carriers transport mechanism and performance of this heterojunction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic Structure Engineering of Cu2O Film/ZnO Nanorods Array All-Oxide p-n Heterostructure for Enhanced Photoelectrochemical Property and Self-powered Biosensing Application

We have engineered the electronic structure at the interface between Cu2O and ZnO nanorods (NRs) array, through adjusting the carrier concentration of Cu2O. The electrodeposition of Cu2O at pH 11 acquired the highest carrier concentration, resulting in the largest interfacial electric field between Cu2O and ZnO, which finally led to the highest separation efficiency of photogenerated charge car...

متن کامل

Microstructure, optical properties, and catalytic performance of Cu2O-modified ZnO nanorods prepared by electrodeposition

Cu2O-modified ZnO nanorods are prepared by a two-step electrodeposition method on ITO substrates, and the deposition time of Cu2O is 0, 1, 5, and 10 min, respectively. Cu2O particles are embedded in the interspaces of the ZnO nanorods, and the amounts of the Cu2O particles increase obviously when the deposition time lasts longer. The peaks corresponding to ZnO nanorods and Cu2O particles are de...

متن کامل

Interface stoichiometry control to improve device voltage and modify band alignment in ZnO/Cu2O heterojunction solar cells

Broader context Cuprous oxide (Cu2O) is a candidate material for photovoltaic and photoelectrochemical device applications due to its suitable band gap and low processing cost. Furthermore, due to the natural abundance of its component elements in the atmosphere and crust, it is a candidate for terawatt scale solar energy production. Given the electronic band gap of Cu2O is 2.1 eV, the detailed...

متن کامل

Microstructures and Photovoltaic Properties of Zn(Al)O/Cu2O-Based Solar Cells Prepared by Spin-Coating and Electrodeposition

Copper oxide (Cu2O)-based heterojunction solar cells were fabricated by spin-coating and electrodeposition methods, and photovoltaic properties and microstructures were investigated. Zinc oxide (ZnO) and Cu2O were used as nand p-type semiconductors, respectively, to fabricate photovoltaic devices based on In-doped tin oxide/ZnO/Cu2O/Au heterojunction structures. Short-circuit current and fill f...

متن کامل

Linköping University Post Print Study of luminescent centers in ZnO nanorods catalytically grown on 4H-p-SiC

High quality ZnO nanorods (NRs) were grown by the vapour-liquid-solid (VLS) technique on 4H-p-SiC substrates. Heterojunction light emitting diodes (LEDs) were fabricated. Electrical characterisation including deep level transient spectroscopy (DLTS) complemented by photolumincence (PL) are used to characterize the heterojunction LEDs. On contrary to previously published results on n-ZnO thin fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016