Parallel Adaptive Cartesian Upwind Methods for Shock-Driven Multiphysics Simulation
نویسنده
چکیده
The multiphysics fluid-structure interaction simulation of shock-loaded thin-walled structures requires the dynamic coupling of a shock-capturing flow solver to a solid mechanics solver for large deformations. By combining a Cartesian embedded boundary approach with dynamic mesh adaptation a generic software framework for such flow solvers has been constructed that allows easy exchange of the specific hydrodynamic finite volume upwind scheme and coupling to various explicit finite element solid dynamics solvers. The paper gives an overview of the computational approach and presents first simulations that couple the software to the general purpose solid dynamics code DYNA3D.
منابع مشابه
Detonation Structure Simulation with AMROC
Numerical simulations can be the key to the thorough understanding of the multi-dimensional nature of transient detonation waves. But the accurate approximation of realistic detonations is extremely demanding, because a wide range of different scales needs to be resolved. In this paper, we summarize our successful efforts in simulating multidimensional detonations with detailed and highly stiff...
متن کاملAn Adaptive Cartesian Detonation Solver for Fluid-Structure Interaction Simulation on Distributed Memory Computers
Time-accurate fluid-structure interaction simulations of strong shock and detonation waves impinging on deforming solid structures benefit significantly from the application of dynamic mesh adaptation in the fluid. A patch-based parallel fluid solver with adaptive mesh refinement in space and time tailored for this problem class is presented; special attention is given to the robustness of the ...
متن کاملDynamic Data Driven Methodologies for Multiphysics System Modeling and Simulation
We are presenting a progress overview associated with our work on a data-driven environment for multiphysics applications (DDEMA). In this paper, we emphasize the dynamic-data-driven adaptive modeling and simulation aspects. Adaptive simulation examples of sensororiginating data-driven precomputed solution synthesis are given for two applications. Finally, some of the computational implementati...
متن کاملBlock-structured Adaptive Mesh Refinement - Theory, Implementation and Application
Structured adaptive mesh refinement (SAMR) techniques can enable cutting-edge simulations of problems governed by conservation laws. Focusing on the strictly hyperbolic case, these notes explain all algorithmic and mathematical details of a technically relevant implementation tailored for distributed memory computers. An overview of the background of commonly used finite volume discretizations ...
متن کاملA Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws
The finite difference methods of Godunov, Hyman, Lax and Wendroff (two-step), MacCormack, Rusanov, the upwind scheme, the hybrid scheme of Harten and Zwas, the antidiffusion method of Boris and Book, the artificial compression method of Harten, and Glimm’s method, a random choice method, are discussed. The methods are used to integrate the one-dimensional Eulerian form of the equations of gas d...
متن کامل