Hyperthermia stimulates nitric oxide formation: electron paramagnetic resonance detection of .NO-heme in blood.
نویسندگان
چکیده
Previous experiments from our laboratory have demonstrated that severe hyperthermia results in a selective loss of splanchnic vasoconstriction. Using electron paramagnetic resonance spectroscopy to scan whole blood samples collected in vivo from the portal vein and femoral artery of conscious unrestrained rats, we observed an increase in the concentration of spectroscopy-detectable species in portal venous blood of all heat-stressed animals. These spectra consisted of at least three distinct species: one with a broad feature having an effective g factor for the unpaired electron (g) of 2.06 assigned to the copper-binding acute phase protein ceruloplasmin, and two with narrower features that evolved at core temperatures > 39 degrees C representing a semiquinone radical and .NO-heme. This heat-induced signal displays the classic nitrogen triplet hyperfine structure (nitrogen hyperfine splitting constant = 17.5 gauss, centered at g = 2.012) that is consistent with a five-coordinate heme complex and is characteristic of an unpaired electron coupled to nitrogen in the ferrous .NO-heme adduct [(alpha 2+NO) beta 3+]2. The intensity of this signal increased approximately twofold as core temperature rose to > 39 degrees C, peaking 1 h post-heat exposure at greater than threefold basal concentration. This species was not seen in corresponding arterial blood samples. This is the first demonstration that whole body hyperthermia produces increased concentrations of radicals and metal binding proteins in the venous blood of the rat and suggests that severe hyperthermia stimulates an enhanced local release of .NO within the splanchnic circulation.
منابع مشابه
Lack of allosterically controlled intramolecular transfer of nitric oxide from the heme to cysteine in the beta subunit of hemoglobin.
The SNO-Hb hypothesis holds that heme-bound nitric oxide (NO) present in the beta subunits of T-state hemoglobin (Hb) will be transferred to the beta-93 cysteine upon conversion to R-state Hb, thereby forming SNO-Hb. A deficiency in the ability of Hb to facilitate this intramolecular transfer has recently been purported to play a role in pulmonary hypertension and sickle cell disease. We prepar...
متن کاملNitric oxide reaction with red blood cells and hemoglobin under heterogeneous conditions.
Understanding the interaction of nitric oxide (NO) with red blood cells (RBCs) is vital to elucidating the metabolic fate of NO in the vasculature. Because hemoglobin (Hb) is the most abundant intraerythrocytic protein and reacts rapidly with NO, the interaction of NO with Hb has been studied extensively. We and others have shown the NO reaction with RBCs is nearly 1,000-fold slower than the re...
متن کاملIn vivo formation of electron paramagnetic resonance-detectable nitric oxide and of nitrotyrosine is not impaired during murine leishmaniasis.
Recent studies have provided evidence for a dual role of nitric oxide (NO) during murine leishmaniasis. To explore this problem, we monitored the formation of NO and its derived oxidants during the course of Leishmania amazonensis infection in tissues of susceptible (BALB/c) and relatively resistant (C57BL/6) mice. NO production was detected directly by low-temperature electron paramagnetic res...
متن کاملEPR detection of heme and nonheme iron-containing protein nitrosylation by nitric oxide during rejection of rat heart allograft.
The paramagnetic molecule nitric oxide (NO), produced from L-arginine by a specific enzyme (NO synthase), has been shown to be involved in a surprising variety of mammalian cellular responses, including the regulation of T cell immunity to alloantigens in vitro. In cytotoxic activated macrophages, NO production results in a characteristic pattern of alteration of iron-containing enzyme function...
متن کاملElectromagnetic Properties of Hemoproteins V. OPTICAL AND ELECTRON PARAMAGNETIC RESONANCE CHARACTERISTICS OF NITRIC OXIDE DERIVATIVES OF METALLOPORPHYRIN-APOHEMOPROTEIN
Paramagnetic complexes of iron (III), manganese (II), and cobalt (II) protoporphyrins IX and apohemoproteins react with nitric oxide to form spectroscopically distinct compounds. Optical and electron paramagnetic resonance (EPR) studies suggest that a l-electron transfer between nitric oxides and metal ions which occurs in these reactions results in the formation of spin-paired complexes of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 77 2 شماره
صفحات -
تاریخ انتشار 1994