TMG-123, a novel glucokinase activator, exerts durable effects on hyperglycemia without increasing triglyceride in diabetic animal models
نویسندگان
چکیده
Glucokinase (GK) plays a critical role for maintaining glucose homeostasis with regulating glucose uptake in liver and insulin secretion in pancreas. GK activators have been reported to decrease blood glucose levels in patients with type 2 diabetes mellitus. However, clinical development of GK activators has failed due to the loss of glucose-lowering effects and increased plasma triglyceride levels after chronic treatment. Here, we generated a novel GK activator, TMG-123, examined its in vitro and in vivo pharmacological characteristics, and evaluated its risks of aforementioned clinical issues. TMG-123 selectively activated GK enzyme activity without increasing Vmax. TMG-123 improved glucose tolerance without increasing plasma insulin levels in both insulin-deficient (Goto-Kakizaki rats) and insulin-resistant (db/db mice) models. The beneficial effect on glucose tolerance was greater than results observed with clinically available antidiabetic drugs such as metformin and glibenclamide in Zucker Diabetic Fatty rats. TMG-123 also improved glucose tolerance in combination with metformin. After 4 weeks of administration, TMG-123 reduced the Hemoglobin A1c levels without affecting liver and plasma triglyceride levels in Goto-Kakizaki rats and Diet-Induced Obesity mice. Moreover, TMG-123 sustained its effect on Hemoglobin A1c levels even after 24 weeks of administration without affecting triglycerides. Taken together, these data indicate that TMG-123 exerts glucose-lowering effects in both insulin-deficient and -resistant diabetes, and sustains reduced Hemoglobin A1c levels without affecting hepatic and plasma triglycerides even after chronic treatment. Therefore, TMG-123 is expected to be an antidiabetic drug that overcomes the concerns previously reported with other GK activators.
منابع مشابه
The Hepatoselective Glucokinase Activator PF-04991532 Ameliorates Hyperglycemia without Causing Hepatic Steatosis in Diabetic Rats
Hyperglycemia resulting from type 2 diabetes mellitus (T2DM) is the main cause of diabetic complications such as retinopathy and neuropathy. A reduction in hyperglycemia has been shown to prevent these associated complications supporting the importance of glucose control. Glucokinase converts glucose to glucose-6-phosphate and determines glucose flux into the β-cells and hepatocytes. Since acti...
متن کاملEffects of a Novel Glucokinase Activator, HMS5552, on Glucose Metabolism in a Rat Model of Type 2 Diabetes Mellitus
Glucokinase (GK) plays a critical role in the control of whole-body glucose homeostasis. We investigated the possible effects of a novel glucokinase activator (GKA), HMS5552, to the GK in rats with type 2 diabetes mellitus (T2DM). Male Sprague-Dawley (SD) rats were divided into four groups: control group, diabetic group, low-dose (10 mg/kg) HMS5552-treated diabetic group (HMS-L), and high-dose ...
متن کاملHyperglycemia Induced by Glucokinase Deficiency Accelerates Atherosclerosis Development and Impairs Lesion Regression in Combined Heterozygous Glucokinase and the Apolipoprotein E-Knockout Mice
Aim. Models combining diabetes and atherosclerosis are important in evaluating the cardiovascular (CV) effects and safety of antidiabetes drugs in the development of treatments targeting CV complications. Our aim was to evaluate if crossing the heterozygous glucokinase knockout mouse (GK+/-) and hyperlipidemic mouse deficient in apolipoprotein E (ApoE-/-) will generate a disease model exhibitin...
متن کاملTreatment of Diabetes and Long-Term Survival After Insulin and Glucokinase Gene Therapy
Diabetes is associated with severe secondary complications, largely caused by poor glycemic control. Treatment with exogenous insulin fails to prevent these complications completely, leading to significant morbidity and mortality. We previously demonstrated that it is possible to generate a "glucose sensor" in skeletal muscle through coexpression of glucokinase and insulin, increasing glucose u...
متن کاملIn situ glucose uptake and glucokinase activity of pancreatic islets in diabetic and obese rodents.
The present study evaluated the involvement of glucose transport and phosphorylation in glucose-stimulated insulin release from pancreatic islets. Using quantitative histochemical techniques, we investigated basal islet glucose content, islet glucose uptake in situ during acute extreme experimental hyperglycemia, and islet glucokinase activity in several animal models of diabetes and obesity. T...
متن کامل