Bayesian informative dropout model for longitudinal binary data with random effects using conditional and joint modeling approaches.

نویسنده

  • Jennifer S K Chan
چکیده

Dropouts are common in longitudinal study. If the dropout probability depends on the missing observations at or after dropout, this type of dropout is called informative (or nonignorable) dropout (ID). Failure to accommodate such dropout mechanism into the model will bias the parameter estimates. We propose a conditional autoregressive model for longitudinal binary data with an ID model such that the probabilities of positive outcomes as well as the drop-out indicator in each occasion are logit linear in some covariates and outcomes. This model adopting a marginal model for outcomes and a conditional model for dropouts is called a selection model. To allow for the heterogeneity and clustering effects, the outcome model is extended to incorporate mixture and random effects. Lastly, the model is further extended to a novel model that models the outcome and dropout jointly such that their dependency is formulated through an odds ratio function. Parameters are estimated by a Bayesian approach implemented using the user-friendly Bayesian software WinBUGS. A methadone clinic dataset is analyzed to illustrate the proposed models. Result shows that the treatment time effect is still significant but weaker after allowing for an ID process in the data. Finally the effect of drop-out on parameter estimates is evaluated through simulation studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A marginalized conditional linear model for longitudinal binary data when informative dropout occurs in continuous time

Within the pattern-mixture modeling framework for informative dropout, conditional linear models (CLMs) are a useful approach to deal with dropout that can occur at any point in continuous time (not just at observation times). However, in contrast with selection models, inferences about marginal covariate effects in CLMs are not readily available if nonidentity links are used in the mean struct...

متن کامل

A Non-Random Dropout Model for Analyzing Longitudinal Skew-Normal Response

In this paper, multivariate skew-normal distribution is em- ployed for analyzing an outcome based dropout model for repeated mea- surements with non-random dropout in skew regression data sets. A probit regression is considered as the conditional probability of an ob- servation to be missing given outcomes. A simulation study of using the proposed methodology and comparing it with a semi-parame...

متن کامل

Mixtures of varying coefficient models for longitudinal data with discrete or continuous nonignorable dropout.

The analysis of longitudinal repeated measures data is frequently complicated by missing data due to informative dropout. We describe a mixture model for joint distribution for longitudinal repeated measures, where the dropout distribution may be continuous and the dependence between response and dropout is semiparametric. Specifically, we assume that responses follow a varying coefficient rand...

متن کامل

Bayesian Determination of Sample Size in Longitudinal Studies with Binary Responses Using Random Effects Models

Sample size determination is important in all statistical studies including longitudinal studies. This is usually done by considering a target power to reduce the costs of sampling. Choosing the right sample size using efficient methods, ensures that the researcher achieve goal of the study, by spending the least amount of energy, time and money. In this article, using a method based on simulat...

متن کامل

Bayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data

Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biometrical journal. Biometrische Zeitschrift

دوره 58 3  شماره 

صفحات  -

تاریخ انتشار 2016