Supercharacters of Unipotent Groups Defined by Involutions (extended Abstract)
نویسنده
چکیده
We construct supercharacter theories of finite unipotent groups in the orthogonal, symplectic and unitary types. Our method utilizes group actions in a manner analogous to that of Diaconis and Isaacs in their construction of supercharacters of algebra groups. The resulting supercharacter theories agree with those of André and Neto in the case of the unipotent orthogonal and symplectic matrices and generalize to a large collection of subgroups. In the unitary group case, we describe the supercharacters and superclasses in terms of labeled set partitions and calculate the supercharacter table. Résumé. Nous construisons les théories de super-caractères des groupes finis unipotents avec les types orthonormales, symplectiques et unitaires. Notre méthode utilise les actions des groupes d’une manière analogue à Diaconis et Isaccs dans leur construction des super-caractères des groupes algébriques. Les théories de super-caractères qui en résultent sont en accord avec ceux d’André et de Neto dans le cas des matrices unipotentes orthonormales et symplectiques. Elles généralisent en une grande sous-collection de sous-groupes. Dans le cas des groupes unitaires, nous décrivons les super-caractères et les superclasses dans les termes de partages d’ensembles étiquetés et nous calculons le tableau des super-caractères.
منابع مشابه
Superclasses and supercharacters of normal pattern subgroups of the unipotent upper triangular matrix group
Let Un denote the group of n× n unipotent upper-triangular matrices over a fixed finite field Fq , and let UP denote the pattern subgroup of Un corresponding to the poset P . This work examines the superclasses and supercharacters, as defined by Diaconis and Isaacs, of the family of normal pattern subgroups of Un. After classifying all such subgroups, we describe an indexing set for their super...
متن کاملNonzero coefficients in restrictions and tensor products of supercharacters of U n ( q ) ( extended abstract )
The standard supercharacter theory of the finite unipotent upper-triangular matrices Un(q) gives rise to a beautiful combinatorics based on set partitions. As with the representation theory of the symmetric group, embeddings of Um(q) ⊆ Un(q) for m ≤ n lead to branching rules. Diaconis and Isaacs established that the restriction of a supercharacter of Un(q) is a nonnegative integer linear combin...
متن کاملRestricting Supercharacters of the Finite Group of Unipotent Uppertriangular Matrices
It is well-known that understanding the representation theory of the finite group of unipotent upper-triangular matrices Un over a finite field is a wild problem. By instead considering approximately irreducible representations (supercharacters), one obtains a rich combinatorial theory analogous to that of the symmetric group, where we replace partition combinatorics with set-partitions. This p...
متن کاملRestrictions of Rainbow Supercharacters and Poset Binomials
A supercharacter theory of a finite group is a natural approximation to the ordinary character theory. There is a particularly nice supercharacter theory for Un, the group of unipotent upper triangular matrices over a finite field, that has a rich combinatorial structure based on set partitions. Various representation theoretic constructions such as restriction and induction have supercharacter...
متن کاملCombinatorial Hopf algebra of supercharacters of type D
We provide a Hopf algebra structure on the supercharacter theory for the unipotent upper triangular group of type D over a finite field. Also, we make further comments with respect to types B and C. Type A was explored by M. Aguiar et. al (2010), thus this extended abstract is a contribution to understand combinatorially the supercharacter theory of the other classical Lie types. Résumé. Nous c...
متن کامل