Glucocorticoid Repression of Inflammatory Gene Expression Shows Differential Responsiveness by Transactivation- and Transrepression-Dependent Mechanisms
نویسندگان
چکیده
Binding of glucocorticoid to the glucocorticoid receptor (GR/NR3C1) may repress inflammatory gene transcription via direct, protein synthesis-independent processes (transrepression), or by activating transcription (transactivation) of multiple anti-inflammatory/repressive factors. Using human pulmonary A549 cells, we showed that 34 out of 39 IL-1β-inducible mRNAs were repressed to varying degrees by the synthetic glucocorticoid, dexamethasone. Whilst these repressive effects were GR-dependent, they did not correlate with either the magnitude of IL-1β-inducibility or the NF-κB-dependence of the inflammatory genes. This suggests that induction by IL-1β and repression by dexamethasone are independent events. Roles for transactivation were investigated using the protein synthesis inhibitor, cycloheximide. However, cycloheximide reduced the IL-1β-dependent expression of 13 mRNAs, which, along with the 5 not showing repression by dexamethasone, were not analysed further. Of the remaining 21 inflammatory mRNAs, cycloheximide significantly attenuated the dexamethasone-dependent repression of 11 mRNAs that also showed a marked time-dependence to their repression. Such effects are consistent with repression occurring via the de novo synthesis of a new product, or products, which subsequently cause repression (i.e., repression via a transactivation mechanism). Conversely, 10 mRNAs showed completely cycloheximide-independent, and time-independent, repression by dexamethasone. This is consistent with direct GR transrepression. Importantly, the inflammatory mRNAs showing attenuated repression by dexamethasone in the presence of cycloheximide also showed a significantly greater extent of repression and a higher potency to dexamethasone compared to those mRNAs showing cycloheximide-independent repression. This suggests that the repression of inflammatory mRNAs by GR transactivation-dependent mechanisms accounts for the greatest levels of repression and the most potent repression by dexamethasone. In conclusion, our data indicate roles for both transrepression and transactivation in the glucocorticoid-dependent repression of inflammatory gene expression. However, transactivation appears to account for the more potent and efficacious mechanism of repression by glucocorticoids on these IL-1β-induced genes.
منابع مشابه
Separating transrepression and transactivation: a distressing divorce for the glucocorticoid receptor?
Glucocorticoids (corticosteroids) are highly effective in combating inflammation in the context of a variety of diseases. However, clinical utility can be compromised by the development of side effects, many of which are attributed to the ability of the glucocorticoid receptor (GR) to induce the transcription of, or transactivate, certain genes. By contrast, the anti-inflammatory effects of glu...
متن کاملAnalysis of the dissociated steroid RU24858 does not exclude a role for inducible genes in the anti-inflammatory actions of glucocorticoids.
Although repression of inflammatory gene expression makes glucocorticoids powerful anti-inflammatory agents, side effects limit usage and drive the search for improved glucocorticoid receptor (GR) ligands. In A549 pulmonary cells, dexamethasone and the prototypical dissociated ligand RU24858 (Mol Endocrinol 11:1245-1255, 1997) repress interleukin (IL)-1beta-induced expression of cyclooxygenase ...
متن کاملDissociated glucocorticoids with anti-inflammatory potential repress interleukin-6 gene expression by a nuclear factor-kappaB-dependent mechanism.
Synthetic glucocorticoids (GCs) remain among the most effective agents for the management of chronic inflammatory diseases. However, major side effects severely limit their therapeutic use. Physiologic and therapeutic activities of GCs are mediated by a nuclear receptor belonging to a superfamily of ligand-inducible transcription factors that, in addition to directly regulating their cognate ge...
متن کاملTransrepression function of the glucocorticoid receptor regulates eyelid development and keratinocyte proliferation but is not sufficient to prevent skin chronic inflammation.
Glucocorticoids (GCs) play a key role in skin homeostasis and stress responses acting through the GC receptor (GR), which modulates gene expression by DNA binding-dependent (transactivation) and -independent (transrepression) mechanisms. To delineate which mechanisms underlie the beneficial and adverse effects mediated by GR in epidermis and other epithelia, we have generated transgenic mice th...
متن کاملA fully dissociated compound of plant origin for inflammatory gene repression.
The identification of selective glucocorticoid receptor (GR) modifiers, which separate transactivation and transrepression properties, represents an important research goal for steroid pharmacology. Although the gene-activating properties of GR are mainly associated with undesirable side effects, its negative interference with the activity of transcription factors, such as NF-kappaB, greatly co...
متن کامل