Complementary Vertices and Adjacency Testing in Polytopes

نویسنده

  • Benjamin A. Burton
چکیده

Our main theoretical result is that, if a simple polytope has a pair of complementary vertices (i.e., two vertices with no facets in common), then it has a second such pair. Using this result, we improve adjacency testing for vertices in both simple and non-simple polytopes: given a polytope in the standard form {x ∈ R |Ax = b and x ≥ 0} and a list of its V vertices, we describe an O(n) test to identify whether any two given vertices are adjacent. For simple polytopes this test is perfect; for non-simple polytopes it may be indeterminate, and instead acts as a filter to identify non-adjacent pairs. Our test requires an O(nV + nV ) precomputation, which is acceptable in settings such as all-pairs adjacency testing. These results improve upon the more general O(nV ) combinatorial and O(n) algebraic adjacency tests from the literature. AMS Classification Primary 52B05, 52B55

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Graph of the Pedigree Polytope

Pedigree polytopes are extensions of the classical Symmetric Traveling Salesman Problem polytopes whose graphs (1-skeletons) contain the TSP polytope graphs as spanning subgraphs. While deciding adjacency of vertices in TSP polytopes is coNP-complete, Arthanari has given a combinatorial (polynomially decidable) characterization of adjacency in Pedigree polytopes. Based on this characterization,...

متن کامل

Spectra of Regular Polytopes

Introduction As is well known, the combinatorial problem of counting paths of length n between two xed vertices in a graph reduces to raising the adjacency matrix A of the graph to the n-th power ((B], p. 11). For an undirected graph, A is symmetric and the problem above simpliies considerably if its spectrum (A) is known and contains few distinct elements. Spectra of graphs, meaning spectra of...

متن کامل

On the family of 0/1-polytopes with NP-complete non-adjacency relation

In 1995 T. Matsui considered a special family 0/1-polytopes for which the problem of recognizing the non-adjacency of two arbitrary vertices is NP-complete. In 2012 the author of this paper established that all the polytopes of this family are present as faces in the polytopes associated with the following NP-complete problems: the traveling salesman problem, the 3-satisfiability problem, the k...

متن کامل

An Adaptive Algorithm for Vector Partitioning

The vector partition problem concerns the partitioning of a set A of n vectors in d-space into p parts so as to maximize an objective function c which is convex on the sum of vectors in each part. Here all parameters d, p, n are considered variables. In this paper, we study the adjacency of vertices in the associated partition polytopes. Using our adjacency characterization for these polytopes,...

متن کامل

Adjacency on Combinatorial Polyhedra

This paper shows some useful properties of the adjacency structures of a class of combinatorial polyhedra including the equality constrained 0-1 polytopes. The class of polyhedra considered here includes 0-1 polytopes related to some combinatorial optimization problems; e.g., set partitioning polytopes, set packing polytopes, perfect matching polytopes, vertex packing polytopes and all the face...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012