Finite field arithmetic using quasi-normal bases

نویسنده

  • Christophe Nègre
چکیده

Efficient multiplication in finite fields Fqn requires Fq-bases of low density,i.e., such that the products of the basis elements have a sparse expression in the basis. In this paper we introduce a new family of bases: the quasi-normal bases. These bases generalize the notion of normal bases and provide simple exponentiation to the power q in Fqn . For some extension fields Fqn over Fq, we construct quasi-normal bases of low density.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptic periods for finite fields

We construct two new families of basis for finite field extensions. Bases in the first family, the so-called elliptic bases, are not quite normal bases, but they allow very fast Frobenius exponentiation while preserving sparse multiplication formulas. Bases in the second family, the so-called normal elliptic bases are normal bases and allow fast (quasi-linear) arithmetic. We prove that all exte...

متن کامل

Revisiting Finite Field Multiplication Using Dickson Bases

Dickson bases have recently been introduced in [1] for finite field arithmetic. Such a basis exists for any extension field and under certain conditions it represents a permutation of type II optimal normal bases. In this paper Dickson bases are developed using simpler mathematical terms and their properties are discussed. An algorithm/architecture based on the model presented in [1] is develop...

متن کامل

The trace of an optimal normal element and low complexity normal bases

Let Fq be a finite field and consider an extension Fqn where an optimal normal element exists. Using the trace of an optimal normal element in Fqn , we provide low complexity normal elements in Fqm , with m = n/k. We give theorems for Type I and Type II optimal normal elements. When Type I normal elements are used with m = n/2, m odd and q even, our construction gives Type II optimal normal ele...

متن کامل

Efficient Arithmetic in GF(2n) through Palindromic Representation

finite field representation, optimal normal basis, palindromic representation A representation of the field GF(2n) for various values of n is described, where the field elements are palindromic polynomials, and the field operations are polynomial addition and multiplication in the ring of polynomials modulo x2n+1–1. This representation can be shown to be equivalent to a field representation of ...

متن کامل

Research Summary

Efficient arithmetic of finite fields is important in implementing cryptosystems, error-correcting codes and computer algebra systems. Normal bases offer considerable advantages. Optimal normal bases in finite fields were introduced at the University of Waterloo by Mullin et al., and are used in practical hardware implementation of public-key cryptosystems. In the same paper, Mullin et al. cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Finite Fields and Their Applications

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2007