Neural Network Based Forecasting of Foreign Currency Exchange Rates
نویسندگان
چکیده
The foreign currency exchange market is the highest and most liquid of the financial markets, with an estimated $1 trillion traded every day. Foreign exchange rates are the most important economic indices in the international financial markets. The prediction of them poses many theoretical and experimental challenges. This paper reports empirical proof that a neural network model is applicable to the prediction of foreign exchange rates. The exchange rates between Indian Rupee and four other major currencies, Pound Sterling, US Dollar, Euro and Japanese Yen are forecast by the trained neural networks. The neural network was trained by three different learning algorithms using historical data to find the suitable algorithm for prediction. The forecasting performance of the proposed system is evaluated using three statistical metrics and compared. The results presented here demonstrate that significantly close prediction can be made without extensive knowledge of market data. KeywordsArtificial Neural Network, Back Propagation Algorithm, Forecasting, Foreign Exchange Rate and Training Function.
منابع مشابه
Forecasting of Foreign Currency Exchange Rate Using Neural Network
Abstract-Foreign exchange market is the largest and the most important one in the world. Foreign exchange transaction is the simultaneous selling of one currency and buying of another currency. It is essential for currency trading in the international market. In this paper, we have investigated Artificial Neural Networks based prediction modelling of foreign exchange rates using five different ...
متن کاملANN-Based Forecasting of Foreign Currency Exchange Rates
In this paper, we have investigated artificial neural networks based prediction modeling of foreign currency rates using three learning algorithms, namely, Standard Backpropagation (SBP), Scaled Conjugate Gradient (SCG) and Backpropagation with Bayesian Regularization (BPR). The models were trained from historical data using five technical indicators to predict six currency rates against Austra...
متن کاملForeign Exchange Rates Forecasting with Neural Networks
| In this paper, a neural network based foreign exchange rates forecasting method is discussed. Neural networks with time series and technical indicators as inputs are built to capture the underlying \rules" of the movement in currency exchange rates. Before using historical data to train the neural networks, the traditional R/S analysis is used to test the \eeciency" of each market. The study ...
متن کاملComparing ANN Based Models with ARIMA for Prediction of Forex Rates
In the dynamic global economy, the accuracy in forecasting the foreign currency exchange (Forex) rates or at least predicting the trend correctly is of crucial importance for any future investment. The use of computational intelligence based techniques for forecasting has been proved extremely successful in recent times. In this paper, we developed and investigated three Artificial Neural Netwo...
متن کاملSVM Based Models for Predicting Foreign Currency Exchange Rates
Support vector machine (SVM) has appeared as a powerful tool for forecasting forex market and demonstrated better performance over other methods, e.g., neural network or ARIMA based model. SVM-based forecasting model necessitates the selection of appropriate kernel function and values of free parameters: regularization parameter and ε– insensitive loss function. In this paper, we investigate th...
متن کامل