Integrated Form of Continuous Newton’s Method

نویسندگان

  • J. W. NEUBERGER
  • Jerry Goldstein
چکیده

An integrated form of continuous Newton’s method is defined. Under rather minimal conditions the method is shown to lead to a zero of the given function. The result is applied to recover a recent Nash-Moser type inverse function theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Nash-moser Theorem with Near-minimal Hypothesis

A proof of a Nash-Moser type inverse function theorem is given under substantially weaker hypothesis than previously known. Our method is associated with continuous Newton’s method rather than the more conventional Newton’s method.

متن کامل

Convergence of Newton's Method over Commutative Semirings

We give a lower bound on the speed at which Newton’s method (as defined in [5, 6]) converges over arbitrary ω-continuous commutative semirings. From this result, we deduce that Newton’s method converges within a finite number of iterations over any semiring which is “collapsed at some k ∈ N” (i.e. k = k + 1 holds) in the sense of [1]. We apply these results to (1) obtain a generalization of Par...

متن کامل

Convergence Ball Analysis of a Modified Newton’s Method Under Hölder Continuous Condition in Banach Space

A modified Newton’s method which computes derivatives every other step is used to solve a nonlinear operator equation. An estimate of the radius of its convergence ball is obtained under Hölder continuous Fréchet derivatives in Banach space. An error analysis is given which matches its convergence order. 2010 Mathematics Subject Classification: 65B05, 47817, 49D15

متن کامل

A continuous Newton-type method for unconstrained optimization

In this paper, we propose a continuous Newton-type method in the form of an ordinary differential equation by combining the negative gradient and Newton’s direction. It is shown that for a general function f(x), our method converges globally to a connected subset of the stationary points of f(x) under some mild conditions; and converges globally to a single stationary point for a real analytic ...

متن کامل

An Extension of Newton’s Method to ω-Continuous Semirings

Fixed point equations x = F (x) over ω-continuous semirings are a natural mathematical foundation of interprocedural program analysis. Equations over the semiring of the real numbers can be solved numerically using Newton’s method. We generalize the method to any ω-continuous semiring and show that it converges faster to the least fixed point than the Kleene sequence 0, F (0), F (F (0)), . . . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003