Demixing and confinement of non-additive hard-sphere mixtures in slit pores.

نویسندگان

  • N G Almarza
  • C Martín
  • E Lomba
  • C Bores
چکیده

Using Monte Carlo simulation, we study the influence of geometric confinement on demixing for a series of symmetric non-additive hard spheres mixtures confined in slit pores. We consider both a wide range of positive non-additivities and a series of pore widths, ranging from the pure two dimensional limit to a large pore width where results are close to the bulk three dimensional case. Critical parameters are extracted by means of finite size analysis. As a general trend, we find that for this particular case in which demixing is induced by volume effects, the critical demixing densities (and pressures) increase due to confinement between neutral walls, following the expected behavior for phase equilibria of systems confined by pure repulsive walls: i.e., confinement generally enhances miscibility. However, a non-monotonous dependence of the critical pressure and density with pore size is found for small non-additivities. In this latter case, it turns out that an otherwise stable bulk mixture can be unexpectedly forced to demix by simple geometric confinement when the pore width decreases down to approximately one and a half molecular diameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Demixing in binary mixtures of hard hyperspheres

– The phase behavior of binary fluid mixtures of hard hyperspheres in four and five dimensions is investigated. Spinodal instability is found by using a recent and accurate prescription for the equation of state of the mixture that requires the equation of state of the single component fluid as input. The role played by the dimensionality on the possible metastability of the demixing transition...

متن کامل

Elusiveness of fluid-fluid demixing in additive hard-core mixtures.

The conjecture that when an additive hard-core mixture phase separates when one of the phases is spatially ordered, well supported by considerable evidence, is in contradiction with some simulations of a binary mixture of hard cubes on cubic lattices. By extending Rosenfeld's fundamental measure theory to lattice models we show that the phase behavior of this mixture is far more complex than si...

متن کامل

Phase transitions in nanoconfined binary mixtures of highly oriented colloidal rods.

We analyse a binary mixture of colloidal parallel hard cylindrical particles with identical diameters but dissimilar lengths L(1) and L(2), with s = L(2)/L(1) = 3, confined by two parallel hard walls in a planar slit-pore geometry, using a fundamental-measure density functional theory. This model presents nematic (N) and two types of smectic (S) phases, with first- and second-order N-S bulk tra...

متن کامل

Bulk fluid phase behaviour of colloidal platelet-sphere and platelet-polymer mixtures.

Using a geometry-based fundamental measure density functional theory, we calculate bulk fluid phase diagrams of colloidal mixtures of vanishingly thin hard circular platelets and hard spheres. We find isotropic-nematic phase separation, with strong broadening of the biphasic region, upon increasing the pressure. In mixtures with large size ratio of platelet and sphere diameters, there is also d...

متن کامل

Phase behavior and structure of model colloid-polymer mixtures confined between two parallel planar walls.

Using Gibbs ensemble Monte Carlo simulations and density functional theory we investigate the fluid-fluid demixing transition in inhomogeneous colloid-polymer mixtures confined between two parallel plates with separation distances between one and ten colloid diameters covering the complete range from quasi-two-dimensional to bulklike behavior. We use the Asakura-Oosawa-Vrij model in which collo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 142 1  شماره 

صفحات  -

تاریخ انتشار 2015