Homoeologous nonreciprocal recombination in polyploid cotton.

نویسندگان

  • Armel Salmon
  • Lex Flagel
  • Bao Ying
  • Joshua A Udall
  • Jonathan F Wendel
چکیده

Polyploid formation and processes that create partial genomic duplication generate redundant genomic information, whose fate is of particular interest to evolutionary biologists. Different processes can lead to diversification among duplicate genes, which may be counterbalanced by mechanisms that retard divergence, including gene conversion via nonreciprocal homoeologous exchange. Here, we used genomic resources in diploid and allopolyploid cotton (Gossypium) to detect homoeologous single nucleotide polymorphisms provided by expressed sequence tags from G. arboreum (A genome), G. raimondii (D genome) and G. hirsutum (AD genome), allowing us to identify homoeo-single nucleotide polymorphism patterns indicative of potential homoeologous exchanges. We estimated the proportion of contigs in G. hirsutum that have experienced nonreciprocal homoeologous exchanges since the origin of polyploid cotton 1-2 million years ago (Mya) to be between 1.8% and 1.9%. To address the question of when the intergenomic exchange occurred, we assayed six of the genes affected by homoeo-recombination in all five Gossypium allopolyploids using a phylogenetic approach. This analysis revealed that nonreciprocal homoeologous exchanges have occurred throughout polyploid divergence and speciation, as opposed to saltationally with polyploid formation. In addition, some genomic regions show multiple patterns of homoeologous recombination among species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Duplicate Gene Revolution, Homoeologous Recombination, and Transcriptome Characterization in Allopolyploid Cotton

Background: Modern allotetraploid cotton contains an “A” and “D” genome from an ancestral polyploidy event that occurred approximately 1–2 million years ago. Diploid Aand D-genome species can be compared to the Aand D-genomes found within these allotetraploids to make evolutionary inferences about polyploidy. In this paper we present a comprehensive EST assembly derived from diploid and model a...

متن کامل

The cytonuclear dimension of allopolyploid evolution: an example from cotton using rubisco.

During allopolyploid speciation, two divergent nuclear genomes merge, yet only one (usually the maternal) of the two sets of progenitor organellar genomes is maintained. Rubisco (1,5-bisphosphate carboxylase/oxygenase) is composed of nuclear-encoded small subunits (SSUs) and plastome-encoded large subunits (LSUs), providing an ideal system to explore the evolutionary process of cytonuclear acco...

متن کامل

Correction: DNA Sequence Evolution and Rare Homoeologous Conversion in Tetraploid Cotton

Allotetraploid cotton species are a vital source of spinnable fiber for textiles. The polyploid nature of the cotton genome raises many evolutionary questions as to the relationships between duplicated genomes. We describe the evolution of the cotton genome (SNPs and structural variants) with the greatly improved resolution of 34 deeply re-sequenced genomes. We also explore the evolution of hom...

متن کامل

Homoeologous Chromosome Sorting and Progression of Meiotic Recombination in Brassica napus: Ploidy Does Matter!

Meiotic recombination is the fundamental process that produces balanced gametes and generates diversity within species. For successful meiosis, crossovers must form between homologous chromosomes. This condition is more difficult to fulfill in allopolyploid species, which have more than two sets of related chromosomes (homoeologs). Here, we investigated the formation, progression, and completio...

متن کامل

Origins, colonization, and lineage recombination in a widespread perennial soybean polyploid complex.

Polyploidy is a dominant feature of flowering plant genomes, including those of many important crop species, implying that polyploidy confers evolutionary advantages on plant species. Recent molecular studies suggest that polyploids often originate many times from the same progenitor diploids. For this to provide a broader genetic base for a polyploid species, there must be lineage recombinatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The New phytologist

دوره 186 1  شماره 

صفحات  -

تاریخ انتشار 2010