The Ring of Graph Invariants - Upper and Lower Bounds for Minimal Generators

نویسنده

  • Tomi Mikkonen
چکیده

In this paper we study the ring of graph invariants, focusing mainly on the invariants of simple graphs. We show that all other invariants, such as sorted eigenvalues, degree sequences and canonical permutations, belong to this ring. In fact, every graph invariant is a linear combination of the basic graph invariants which we study in this paper. To prove that two graphs are isomorphic, a number of invariants are required, which are called separator invariants. The minimal set of separator invariants is also the minimal generator set for the ring of graph invariants. We find lower and upper bounds for the minimal number of generator/separator invariants needed for proving graph isomorphism. The minimal number of generators/separators is the transcendence degree of the ring of graph invariants. Finally we find a sufficient condition for Ulam’s conjecture to be true based on Redfield’s enumeration formula.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degree Bounds for Syzygies of Invariants

Suppose that G is a linearly reductive group. Good degree bounds for generators of invariant rings were given in [2]. Here we study the minimal free resolution of the invariant ring. Recently it was shown that if G is a finite linearly reductive group, then the ring of invariants is generated in degree ≤ |G| (see [5, 6, 3]). This extends the classical result of Noether who proved the bound in c...

متن کامل

Product version of reciprocal degree distance of composite graphs

A {it topological index} of a graph is a real number related to the graph; it does not depend on labeling or pictorial representation of a graph. In this paper, we present the upper bounds for the product version of reciprocal degree distance of the tensor product, join and strong product of two graphs in terms of other graph invariants including the Harary index and Zagreb indices.

متن کامل

Albertson energy and Albertson Estrada index of graphs

‎Let $G$ be a graph of order $n$ with vertices labeled as $v_1‎, ‎v_2,dots‎ , ‎v_n$‎. ‎Let $d_i$ be the degree of the vertex $v_i$ for $i = 1‎, ‎2‎, ‎cdots‎ , ‎n$‎. ‎The Albertson matrix of $G$ is the square matrix of order $n$ whose $(i‎, ‎j)$-entry is equal to $|d_i‎ - ‎d_j|$ if $v_i $ is adjacent to $v_j$ and zero‎, ‎otherwise‎. ‎The main purposes of this paper is to introduce the Albertson ...

متن کامل

Bounds on First Reformulated Zagreb Index of Graph

The first reformulated Zagreb index $EM_1(G)$ of a simple graph $G$ is defined as the sum of the terms $(d_u+d_v-2)^2$ over all edges $uv$ of $G .$ In this paper, the various upper and lower bounds for the first reformulated Zagreb index of a connected graph interms of other topological indices are obtained.

متن کامل

On Zagreb Energy and edge-Zagreb energy

In this paper, we obtain some upper and lower bounds for the general extended energy of a graph. As an application, we obtain few bounds for the (edge) Zagreb energy of a graph. Also, we deduce a relation between Zagreb energy and edge-Zagreb energy of a graph $G$ with minimum degree $delta ge2$. A lower and upper bound for the spectral radius of the edge-Zagreb matrix is obtained. Finally, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008