Genetic Diversity on the Human X Chromosome Does Not Support a Strict Pseudoautosomal Boundary
نویسندگان
چکیده
Unlike the autosomes, recombination between the X chromosome and the Y chromosome is often thought to be constrained to two small pseudoautosomal regions (PARs) at the tips of each sex chromosome. PAR1 spans the first 2.7 Mb of the proximal arm of the human sex chromosomes, whereas the much smaller PAR2 encompasses the distal 320 kb of the long arm of each sex chromosome. In addition to PAR1 and PAR2, there is a human-specific X-transposed region that was duplicated from the X to the Y chromosome. The X-transposed region is often not excluded from X-specific analyses, unlike the PARs, because it is not thought to routinely recombine. Genetic diversity is expected to be higher in recombining regions than in nonrecombining regions because recombination reduces the effect of linked selection. In this study, we investigated patterns of genetic diversity in noncoding regions across the entire X chromosome of a global sample of 26 unrelated genetic females. We found that genetic diversity in PAR1 is significantly greater than in the nonrecombining regions (nonPARs). However, rather than an abrupt drop in diversity at the pseudoautosomal boundary, there is a gradual reduction in diversity from the recombining through the nonrecombining regions, suggesting that recombination between the human sex chromosomes spans across the currently defined pseudoautosomal boundary. A consequence of recombination spanning this boundary potentially includes increasing the rate of sex-linked disorders (e.g., de la Chapelle) and sex chromosome aneuploidies. In contrast, diversity in PAR2 is not significantly elevated compared to the nonPARs, suggesting that recombination is not obligatory in PAR2. Finally, diversity in the X-transposed region is higher than in the surrounding nonPARs, providing evidence that recombination may occur with some frequency between the X and Y chromosomes in the X-transposed region.
منابع مشابه
A slippery boundary.
T he Y chromosome has provided one of the greatest challenges in finalizing complete mammalian genome sequences in part because of its unusual relationship with the X chromosome. Part of the Y chromosome, known as the pseudoautosomal region, must pair with the complementary region on the X chromosome and undergo recombination, so that the resulting crossovers stabilize the sex chromosomes for p...
متن کاملPseudoautosomal Region 1 Length Polymorphism in the Human Population
The human sex chromosomes differ in sequence, except for the pseudoautosomal regions (PAR) at the terminus of the short and the long arms, denoted as PAR1 and PAR2. The boundary between PAR1 and the unique X and Y sequences was established during the divergence of the great apes. During a copy number variation screen, we noted a paternally inherited chromosome X duplication in 15 independent fa...
متن کاملA gene spans the pseudoautosomal boundary in mice.
The X and Y chromosomes of the mouse, like those of other mammals, are heteromorphic over most of their length, but at the distal ends of the chromosomes is a region of sequence identity, the pseudoautosomal region (PAR), where the chromosomes pair and recombine during male meiosis. The point at which the PAR diverges into X- and Y-specific sequences is called the pseudoautosomal boundary. We h...
متن کاملRecombination and nucleotide diversity in the sex chromosomal pseudoautosomal region of the emu, Dromaius novaehollandiae.
Pseudoautosomal regions (PARs) shared by avian Z and W sex chromosomes are typically small homologous regions within which recombination still occurs and are hypothesized to share the properties of autosomes. We capitalized on the unusual structure of the sex chromosomes of emus, Dromaius novaehollandiae, which consist almost entirely of PAR shared by both sex chromosomes, to test this hypothes...
متن کاملLinkage, physical mapping, and DNA sequence analysis of pseudoautosomal loci on the human X and Y chromosomes.
The pseudoautosomal region of the human X and Y chromosomes is subject to frequent X-Y recombination during male meiosis. We report the finding of two pseudoautosomal loci, DXYS20 and DXYS28, characterized by highly informative restriction fragment length polymorphisms (RFLPs). The pseudoautosomal character of DXYS20 and DXYS28 was formally demonstrated by comparing their transmission to 45,X a...
متن کامل