A Null Space Free Jacobi-Davidson Iteration for Maxwell's Operator

نویسندگان

  • Yin-Liang Huang
  • Tsung-Ming Huang
  • Wen-Wei Lin
  • Wei-Cheng Wang
چکیده

We present an efficient null space free Jacobi-Davidson method to compute the positive eigenvalues of the degenerate elliptic operator arising from Maxwell’s equations. We consider spatial compatible discretizations such as Yee’s scheme which guarantee the existence of a discrete vector potential. During the Jacobi-Davidson iteration, the correction process is applied to the vector potential instead. The correction equation is solved approximately as in original Jacobi-Davidson approach. The computational cost of the transformation from the vector potential to the corrector is negligible. As a consequence, the expanding subspace automatically stays out of the null space and no extra projection step is needed. Numerical evidence confirms that the new method is much more efficient than the original Jacobi-Davidson method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Results for the Jacobi-Dunkl Transform in the Space $L^{p}(mathbb{R},A_{alpha,beta}(x)dx)$

In this paper, using a generalized Jacobi-Dunkl translation operator, we obtain a generalization of Titchmarsh's theorem for the Dunkl transform for functions satisfying the Lipschitz Jacobi-Dunkl condition in the space Lp.

متن کامل

A Comparison of Solvers for Large Eigenvalue Problems Originating from Maxwell's Equations

We present experiments with various solvers for large sparse matrix eigenvalue problems. These problems occur in the computation of a few of the lowest frequencies of standing electromagnetic waves in cavities that have been discretized by the nite element method. The solvers investigated are (1) subspace iteration, (2) block Lanczos algorithm, (3) implicitly restarted Lanczos algorithm and (4)...

متن کامل

Hyperbolic Behavior of Jacobi Fields Along Billiard Flows

This paper discusses hyperbolic behavior of Jacobi fields along billiard flows on multidimensional Reimannian manifolds. A class of generalized differential operators associated with the impulsive equations (generalized Jacobi equations) are defined using a new Radon measure. We investigate the hyperbolic behavior of functions in the null-space of the operator by applying operator theory.

متن کامل

Studies on Jacobi-Davidson, Rayleigh quotient iteration, inverse iteration generalized Davidson and Newton updates

We study Davidson-type subspace eigensolvers. Correction equations of Jacobi-Davidson and several other schemes are reviewed. New correction equations are derived. A general correction equation is constructed, existing correction equations may be considered as special cases of this general equation. The main theme of this study is to identify the essential common ingredient that leads to the ef...

متن کامل

A Jacobi-Davidson Method for Solving Complex Symmetric Eigenvalue Problems

We discuss variants of the Jacobi–Davidson method for solving the generalized complex-symmetric eigenvalue problem. The Jacobi–Davidson algorithm can be considered as an accelerated inexact Rayleigh quotient iteration. We show that it is appropriate to replace the Euclidean inner product xy in C by the bilinear form x y. The Rayleigh quotient based on this bilinear form leads to an asymptotical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2015