Towards a Multifunctional Electrochemical Sensing and Niosome Generation Lab-on-Chip Platform Based on a Plug-and-Play Concept
نویسندگان
چکیده
In this paper, we present a new modular lab on a chip design for multimodal neurotransmitter (NT) sensing and niosome generation based on a plug-and-play concept. This architecture is a first step toward an automated platform for an automated modulation of neurotransmitter concentration to understand and/or treat neurodegenerative diseases. A modular approach has been adopted in order to handle measurement or drug delivery or both measurement and drug delivery simultaneously. The system is composed of three fully independent modules: three-channel peristaltic micropumping system, a three-channel potentiostat and a multi-unit microfluidic system composed of pseudo-Y and cross-shape channels containing a miniature electrode array. The system was wirelessly controlled by a computer interface. The system is compact, with all the microfluidic and sensing components packaged in a 5 cm × 4 cm × 4 cm box. Applied to serotonin, a linear calibration curve down to 0.125 mM, with a limit of detection of 31 μ M was collected at unfunctionalized electrodes. Added sensitivity and selectivity was achieved by incorporating functionalized electrodes for dopamine sensing. Electrode functionalization was achieved with gold nanoparticles and using DNA and o-phenylene diamine polymer. The as-configured platform is demonstrated as a central component toward an "intelligent" drug delivery system based on a feedback loop to monitor drug delivery.
منابع مشابه
Multifunctional optofluidic lab-on-chip platform for Raman and fluorescence spectroscopic microfluidic analysis.
A multifunctional lab-on-a-chip platform for spectroscopic analysis of liquid samples based on an optofluidic jet waveguide is reported. The optofluidic detection scheme is achieved through the total internal reflection arising in a liquid jet of only 150 μm diameter, leading to highly efficient signal excitation and collection. This results in an optofluidic chip with an alignment-free spectro...
متن کاملThe microfluidic puzzle: chip-oriented rapid prototyping.
We demonstrate a new concept for reconfigurable microfluidic devices from elementary functional units. Our approach suppresses the need for patterning, soft molding and bonding when details on a chip have to be modified. Our system has two parts, a base-platform used as a scaffold and functional modules which are combined by 'plug-and-play'. To demonstrate that our system sustains typical press...
متن کاملIn situ electrokinetic enhancement for self-assembled-monolayer-based electrochemical biosensing.
This study reports a multifunctional electrode approach which directly implements electrokinetic enhancement on a self-assembled-monolayer-based electrochemical sensor for point-of-care diagnostics. Using urinary tract infections as a model system, we demonstrate that electrokinetic enhancement, which involves in situ stirring and heating, can enhance the sensitivity of the strain specific 16S ...
متن کاملMicrofluidic platform for on-demand generation of spatially indexed combinatorial droplets.
We propose a highly versatile and programmable nanolitre droplet-based platform that accepts an unlimited number of sample plugs from a multi-well plate, performs digitization of these sample plugs into smaller daughter droplets and subsequent synchronization-free, robust injection of multiple reagents into the sample daughter droplets on-demand. This platform combines excellent control of valv...
متن کاملLab-on-a-Tip (LOT): Where Nanotechnology can Revolutionize Fibre Optics
Recently developed lab-on-a-chip technologies integrate multiple traditional assays on a single chip with higher sensitivity, faster assay time, and more streamlined sample operation. We discuss the prospects of the lab-on-a-tip platform, where assays can be integrated on a miniaturized tip for in situ and in vivo analysis. It will resolve some of the limitations of available lab-on-a-chip plat...
متن کامل