Bioresources inner-recycling between bioflocculation of Microcystis aeruginosa and its reutilization as a substrate for bioflocculant production

نویسندگان

  • Liang Xu
  • Mingxin Huo
  • Caiyun Sun
  • Xiaochun Cui
  • Dandan Zhou
  • John C. Crittenden
  • Wu Yang
چکیده

Bioflocculation, being environmental-friendly and highly efficient, is considered to be a promising method to harvest microalgae. However, one limitation of this technology is high expense on substrates for bioflocculant bacteria cultivation. In this regard, we developed an innovative method for the inner-recycling of biomass that could harvest the typical microalgae, Microcystis aeruginosa, using a bioflocculant produced by Citrobacter sp. AzoR-1. In turn, the flocculated algal biomass could be reutilized as a substrate for Citrobacter sp. AzoR-1 cultivation and bioflocculant production. The experimental results showed that 3.4 ± 0.1 g of bioflocculant (hereafter called MBF-12) was produced by 10 g/L of wet biomass of M. aeruginosa (high-pressure steam sterilized) with an additional 10 g/L of glucose as an extra carbon source. The efficiency of MBF-12 for M. aeruginosa harvesting could reach ~95% under the optimized condition. Further analysis showed that MBF-12, dominated by ~270 kDa biopolymers, contributed the bioflocculation mechanisms of interparticle bridging and biosorption process. Bioflocculant synthesis by Citrobacter sp. AzoR-1 using microalga as a substrate, including the polyketide sugar unit, lipopolysaccharide, peptidoglycan and terpenoid backbone pathways. Our research provides the first evidence that harvested algae can be reutilized as a substrate to grow a bioflocculant using Citrobacter sp. AzoR-1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harvesting of freshwater microalgae with microbial bioflocculant: a pilot-scale study

BACKGROUND Nowadays, bioflocculation is considered as a potential technology that could be able to alleviate microalgae dewatering cost regarded as the cornerstone hindrance of their full-scale application. However, most bioflocculation studies reported are laboratory scales. This study examined a pilot-scale and in situ flocculation of freshwater microalgae Desmodesmus brasiliensis by microbia...

متن کامل

Revealing the characteristics of a novel bioflocculant and its flocculation performance in Microcystis aeruginosa removal

In the present work, a novel bioflocculant, EPS-1, was prepared and used to flocculate the kaolin suspension and Microcystis aeruginosa. We focused on the characteristics and flocculation performance of EPS-1, especially with regard to its protein components. An important attribute of EPS-1 was its protein content, with 18 protein types identified that occupied a total content of 31.70% in the ...

متن کامل

Characterization of a Novel Polymeric Bioflocculant Produced from Bacterial Utilization of n-Hexadecane and Its Application in Removal of Heavy Metals

A novel polymeric bioflocculant was produced by a bacterium utilizing degradation of n-hexadecane as the energy source. The bioflocculant was produced with a bioflocculating activity of 87.8%. The hydrocarbon degradation was confirmed by gas chromatography-mass spectrometry analysis and was further supported with contact angle measurements for the changes in hydrophobic nature of the culture me...

متن کامل

Statistical optimization of harvesting Chlorella vulgaris using a novel bio-source, Strychnos potatorum☆

The present study was aimed at harvesting microalga, Chlorella vulgaris, by bioflocculation using seed powder of clearing nut, Strychnos potatorum. The research was essentially the prime step to yield a large biomass for utilising the cells in biodiesel production. Optimization of the parameters influencing bioflocculation was carried out statistically using RSM. The optimized conditions were 1...

متن کامل

Exploration on Bioflocculation of Nannochloropsis oculata Using Response Surface Methodology for Biodiesel Production

Harvesting of algal biomass in biodiesel production involves high energy input and cost incurred process. In order to overcome these problems, bioflocculation process was employed and the efficiency of this process was further improved by the addition of a cationic inducer. In this work marine Bacillus subtilis was used for bioflocculation of Nannochloropsis oculata and ZnCl2 as cationic induce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017