Life Cycle Assessment of a HYSOL Concentrated Solar Power Plant: Analyzing the Effect of Geographic Location
نویسندگان
چکیده
Concentrating Solar Power (CSP) technology is developing in order to achieve higher energy efficiency, reduced economic costs, and improved firmness and dispatchability in the generation of power on demand. To this purpose, a research project titled HYSOL has developed a new power plant, consisting of a combined cycle configuration with a 100 MWe steam turbine and an 80 MWe gas-fed turbine with biomethane. Technological developments must be supported by the identification, quantification, and evaluation of the environmental impacts produced. The aim of this paper is to evaluate the environmental performance of a CSP plant based on HYSOL technology using a Life Cycle Assessment (LCA) methodology while considering different locations. The scenarios investigated include different geographic locations (Spain, Chile, Kingdom of Saudi Arabia, Mexico, and South Africa), an alternative modelling procedure for biomethane, and the use of natural gas as an alternative fuel. Results indicate that the geographic location has a significant influence on the environmental profile of the HYSOL CSP plant. The results obtained for the HYSOL configuration located in different countries presented significant differences (between 35% and 43%, depending on the category), especially in climate change and water stress categories. The differences are mainly attributable to the local availability of solar and water resources and composition of the national electricity mix. In addition, HYSOL technology performs significantly better when hybridizing with biomethane instead of natural gas. This evidence is particularly relevant in the climate change category, where biomethane hybridization emits 27.9–45.9 kg CO2 eq per MWh (depending on the biomethane modelling scenario) and natural gas scenario emits 264 kg CO2 eq/MWh.
منابع مشابه
Feasibility Study on HYSOL CSP
Concentrating Solar Power (CSP) plants utilize thermal conversion of direct solar irradiation. A trough or tower configuration focuses solar radiation and heats up oil or molten salt that subsequently in high temperature heat exchangers generate steam for power generation. High temperature molten salt can be stored and the stored heat can thus increase the load factor and the usability for a CS...
متن کاملThermodynamic modeling and comprehensive off-design performance analysis of a real integrated solar combined cycle power plant
In this paper thermodynamic modeling and comprehensive performance analysis of a real integrated solar combined cycle (ISCC) power plant are performed. Performance of the plant cycle is assessed in off-design condition and in two operation modes of power-boosting and fuel-saving. Such an approach has not been considered for an ISCC plant in the previous studies. Under studied ISCC which is loca...
متن کاملSensitivity analysis of parameters affecting carbon footprint of fossil fuel power plants based on life cycle assessment scenarios
In this study a pseudo comprehensive carbon footprint model for fossil fuel power plants is presented. Parameters which their effects are considered in this study include: plant type, fuel type, fuel transmission type, internal consumption of the plant, degradation, site ambient condition, transmission and distribution losses. Investigating internal consumption, degradation and site ambient con...
متن کاملDeveloping off-design model of Yazd integrated solar combined cycle for analyzing environmental benefits of using solar energy instead of supplementary firing
An integrated solar combined cycle (ISCC) is analyzed at "off-design" operating conditions. Using the principles of thermodynamics heat and mass transfer a computer code is developed in FORTRAN programming language to simulate the system’s hourly performance under steady state conditions. Three scenarios are considered for the study. In the first one, only the combined cycle (CC) is studied. In...
متن کاملLife Cycle Assessment of a High Temperature Molten Salt Concentrated Solar Power Plant
The well-known world energetic matter, mainly due to the worldwide growing energy consumption gone with a reduction of oil and gas availability, and to the environmental effects of the indiscriminate use of fossil fuels in our economy, is leading to the development of clean innovative technologies for the reduction of GHG emissions and the creation of a more sustainable economic structure world...
متن کامل