Resolving the complex role of enzyme conformational dynamics in catalytic function.
نویسندگان
چکیده
Despite growing evidence suggesting the importance of enzyme conformational dynamics (ECD) in catalysis, a consensus on how precisely ECD influences the chemical step and reaction rates is yet to be reached. Here, we characterize ECD in Cyclophilin A, a well-studied peptidyl-prolyl cis-trans isomerase, using normal and accelerated, atomistic molecular dynamics simulations. Kinetics and free energy landscape of the isomerization reaction in solution and enzyme are explored in unconstrained simulations by allowing significantly lower torsional barriers, but in no way compromising the atomistic description of the system or the explicit solvent. We reveal that the reaction dynamics is intricately coupled to enzymatic motions that span multiple timescales and the enzyme modes are selected based on the energy barrier of the chemical step. We show that Kramers' rate theory can be used to present a clear rationale of how ECD affects the reaction dynamics and catalytic rates. The effects of ECD can be incorporated into the effective diffusion coefficient, which we estimate to be about ten times slower in enzyme than in solution. ECD thereby alters the preexponential factor, effectively impeding the rate enhancement. From our analyses, the trend observed for lower torsional barriers can be extrapolated to actual isomerization barriers, allowing successful prediction of the speedup in rates in the presence of CypA, which is in notable agreement with experimental estimates. Our results further reaffirm transition state stabilization as the main effect in enhancing chemical rates and provide a unified view of ECD's role in catalysis from an atomistic perspective.
منابع مشابه
In Silico Studies of Small Molecule Interactions with Enzymes Reveal Aspects of Catalytic Function
Small molecules, such as solvent, substrate, and cofactor molecules, are key players in enzyme catalysis. Computational methods are powerful tools for exploring the dynamics and thermodynamics of these small molecules as they participate in or contribute to enzymatic processes. In-depth knowledge of how small molecule interactions and dynamics influence protein conformational dynamics and funct...
متن کاملEvidence for the Essential Arginine and Histidine Residues in Catalytic Activity of Glucose 6-Phosphate Dehydrogenase from Streptomyces aureofaciens
Glucose 6-phosphate dehydrogenase (G6PD) was purified from Streptomyces aureofaciens and inactivated with butanedione and diethylpyrocarbonate. Incubation of the enzyme with butanedione resulted in a rapid activity loss (80%) within 5 min, followed by a slow phase using a molar ratio to enzyme concentration of 100. Fluorescence studies showed a conformational change in the butanedione-modified ...
متن کاملStructural and kinetic analysis of free methionine-R-sulfoxide reductase from Staphylococcus aureus: conformational changes during catalysis and implications for the catalytic and inhibitory mechanisms.
Free methionine-R-sulfoxide reductase (fRMsr) reduces free methionine R-sulfoxide back to methionine, but its catalytic mechanism is poorly understood. Here, we have determined the crystal structures of the reduced, substrate-bound, and oxidized forms of fRMsr from Staphylococcus aureus. Our structural and biochemical analyses suggest the catalytic mechanism of fRMsr in which Cys(102) functions...
متن کاملStructure, dynamics, and catalytic function of dihydrofolate reductase.
Molecular motions are widely regarded as contributing factors in many aspects of protein function. The enzyme dihydrofolate reductase (DHFR), and particularly that from Escherichia coli, has become an important system for investigating the linkage between protein dynamics and catalytic function, both because of the location and timescales of the motions observed and because of the availability ...
متن کاملMillisecond timescale fluctuations in dihydrofolate reductase are exquisitely sensitive to the bound ligands.
Enzyme catalysis can be described as progress over a multi-dimensional energy landscape where ensembles of interconverting conformational substates channel the enzyme through its catalytic cycle. We applied NMR relaxation dispersion to investigate the role of bound ligands in modulating the dynamics and energy landscape of Escherichia coli dihydrofolate reductase to obtain insights into the mec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 15 شماره
صفحات -
تاریخ انتشار 2012