Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface
نویسندگان
چکیده
Skin friction drag contributes a major portion of the total drag for small and large water vehicles at high Reynolds number (Re). One emerging approach to reducing drag is to use superhydrophobic surfaces to promote slip boundary conditions. However, the air layer or "plastron" trapped on submerged superhydrophobic surfaces often diminishes quickly under hydrostatic pressure and/or turbulent pressure fluctuations. We use active heating on a superhydrophobic surface to establish a stable vapor layer or "Leidenfrost" state at a relatively low superheat temperature. The continuous film of water vapor lubricates the interface, and the resulting slip boundary condition leads to skin friction drag reduction on the inner rotor of a custom Taylor-Couette apparatus. We find that skin friction can be reduced by 80 to 90% relative to an unheated superhydrophobic surface for Re in the range 26,100 ≤ Re ≤ 52,000. We derive a boundary layer and slip theory to describe the hydrodynamics in the system and show that the plastron thickness is h = 44 ± 11 μm, in agreement with expectations for a Leidenfrost surface.
منابع مشابه
Leidenfrost vapour layer moderation of the drag crisis and trajectories of superhydrophobic and hydrophilic spheres falling in water.
We investigate the dynamic effects of a Leidenfrost vapour layer sustained on the surface of heated steel spheres during free fall in water. We find that a stable vapour layer sustained on the textured superhydrophobic surface of spheres falling through 95 °C water can reduce the hydrodynamic drag by up to 75% and stabilize the sphere trajectory for the Reynolds number between 10(4) and 10(6), ...
متن کاملEXPERIMENTAL INVESTIGATION OF DRAG REDUCTION ON AHMED MODEL USING A COMBINATION OF ACTIVE FLOW CONTROL METHODS
Aerodynamic drag is an important factor in vehicles fuel consumption. Pressure drag which is the main component of total drag is a result of boundary layer separation from vehicle surface. Flow control methods are applied to avoid or at least delay separation. Depending upon whether these methods consume energy to control the flow or not, they are called active or passive control methods. In th...
متن کاملTurbulent Drag Reduction by Spanwise Wall Oscillations
The objective of this paper is to examine the effectiveness of wall oscillation as a control scheme of drag reduction. Two flow configurations are considered: constant flow rate and constant mean pressure gradient. The Navier-Stokes equations are solved using Fourier-Chebyshev spectral methods and the oscillation in sinusoidal form is enforced on the walls through boundary conditions for the sp...
متن کاملشبیهسازی عددی جریان آشفته کانال نیمموج با سطوح آبدوست و آبگریز
In the first part of the present study, a two dimensional half-corrugated channel flow is simulated at Reynolds number of 104, in no-slip condition (hydrophilic surfaces( using various low Reynolds turbulence models as well as standard k-ε model; and an appropriate turbulence model (k-ω 1998 model( is proposed. Then, in order to evaluate the proposed solution method...
متن کاملLeidenfrost Vapor Layers Reduce Drag without the Crisis in High Viscosity Liquids.
The drag coefficient C_{D} of a solid smooth sphere moving in a fluid is known to be only a function of the Reynolds number Re and diminishes rapidly at the drag crisis around Re∼3×10^{5}. A Leidenfrost vapor layer on a hot sphere surface can trigger the onset of the drag crisis at a lower Re. By using a range of high viscosity perfluorocarbon liquids, we show that the drag reduction effect can...
متن کامل