Multi-Layer Perceptrons and Symbolic Data
نویسندگان
چکیده
In some real world situations, linear models are not sufficient to represent accurately complex relations between input variables and output variables of a studied system. Multilayer Perceptrons are one of the most successful non-linear regression tool but they are unfortunately restricted to inputs and outputs that belong to a normed vector space. In this chapter, we propose a general recoding method that allows to use symbolic data both as inputs and outputs to Multilayer Perceptrons. The recoding is quite simple to implement and yet provides a flexible framework that allows to deal with almost all practical cases. The proposed method is illustrated on a real world data set.
منابع مشابه
A Pilot Sampling Method for Multi-layer Perceptrons
As the size of samples grows, the accuracy of trained multi-layer perceptrons grows with some improvement in error rates. But we cannot use larger and larger samples, because computational complexity to train the multi-layer perceptrons becomes enormous and data overfitting problem can happen. This paper suggests an effective approach in determining a proper sample size for multi-layer perceptr...
متن کاملGrowing Layers of Perceptrons : Introducing the Extentron Algorithm
The ideas presented here are based on two observations of perceptrons: (1) when the perceptron learning algorithm cycles among hyperplanes, the hyperplanes may be compared to select one that gives a best split of the examples, and (2) it is always possible for the perceptron to build a hyper-plane that separates at least one example from all the rest. We describe the Extentron which grows multi...
متن کاملModeling of measurement error in refractive index determination of fuel cell using neural network and genetic algorithm
Abstract: In this paper, a method for determination of refractive index in membrane of fuel cell on basis of three-longitudinal-mode laser heterodyne interferometer is presented. The optical path difference between the target and reference paths is fixed and phase shift is then calculated in terms of refractive index shift. The measurement accuracy of this system is limited by nonlinearity erro...
متن کاملTraining Multi-layer Perceptrons Using MiniMin Approach
Multi-layer perceptrons (MLPs) have been widely used in classification and regression task. How to improve the training speed of MLPs has been an interesting field of research. Instead of the classical method, we try to train MLPs by a MiniMin model which can ensure that the weights of the last layer are optimal at each step. Significant improvement on training speed has been made using our met...
متن کاملMulti-layer Perceptrons for Functional Data Analysis: A Projection Based Approach
In this paper, we propose a new way to use Functional MultiLayer Perceptrons (FMLP). In our previous work, we introduced a natural extension of Multi Layer Perceptrons (MLP) to functional inputs based on direct manipulation of input functions. We propose here to rely on a representation of input and weight functions thanks to projection on a truncated base. We show that the proposed model has t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0802.0251 شماره
صفحات -
تاریخ انتشار 2008