Compound Particle Swarm Optimization in Dynamic Environments
نویسندگان
چکیده
Adaptation to dynamic optimization problems is currently receiving a growing interest as one of the most important applications of evolutionary algorithms. In this paper, a compound particle swarm optimization (CPSO) is proposed as a new variant of particle swarm optimization to enhance its performance in dynamic environments. Within CPSO, compound particles are constructed as a novel type of particles in the search space and their motions are integrated into the swarm. A special reflection scheme is introduced in order to explore the search space more comprehensively. Furthermore, some information preserving and anti-convergence strategies are also developed to improve the performance of CPSO in a new environment. An experimental study shows the efficiency of CPSO in dynamic environments.
منابع مشابه
A Framework for Adapting Population-Based and Heuristic Algorithms for Dynamic Optimization Problems
In this paper, a general framework was presented to boost heuristic optimization algorithms based on swarm intelligence from static to dynamic environments. Regarding the problems of dynamic optimization as opposed to static environments, evaluation function or constraints change in the time and hence place of optimization. The subject matter of the framework is based on the variability of the ...
متن کاملA New Particle Swarm Optimization Algorithm for Dynamic Environments
Many real world optimization problems are dynamic in which global optimum and local optima change over time. Particle swarm optimization has performed well to find and track optima in dynamic environments. In this paper, we propose a new particle swarm optimization algorithm for dynamic environments. The proposed algorithm utilizes a parent swarm to explore the search space and some child swarm...
متن کاملTriggered Memory-Based Swarm Optimization in Dynamic Environments
In recent years, there has been an increasing concern from the evolutionary computation community on dynamic optimization problems since many real-world optimization problems are time-varying. In this paper, a triggered memory scheme is introduced into the particle swarm optimization to deal with dynamic environments. The triggered memory scheme enhances traditional memory scheme with a trigger...
متن کاملUnified Particle Swarm Optimization in Dynamic Environments
A first investigation of the recently proposed Unified Particle Swarm Optimization algorithm on dynamic environments is provided and discussed on widely used test problems. Results are very promising compared to the corresponding results of the standard Particle Swarm Optimization algorithm, indicating the superiority of the new scheme.
متن کامل