An ARX-Based PID-Sliding Mode Control on Velocity Tracking Control of a Stick-Slip Piezoelectric-Driven Actuator

نویسندگان

  • Y. Cao
  • X. B. Chen
چکیده

Piezoelectric-driven stick slip actuators have been drawn more and more attention in the nanopositioning application due to the high accuracy and theoretical unlimited displacement. However, the hysteresis of piezoelectric actuator (PEA) and the nonlinear friction force between the endeffector and the stage make control of piezoelectric-driven stick slip actuator challenge. This paper presents the development of an autoregressive exogenous (ARX)-based proportional-integralderive (PID)-sliding mode control (SMC) for the velocity tracking control of the piezoelectric-driven stick slip actuator. Stability is guaranteed by rigorously choosing the appropriate PID parameters and the zero steady state error is achieved. To verify the effectiveness of the proposed method, experiments were carried out on a commercially-available piezoelectric-driven stick slip actuator. The tracking errors were compared with the traditional PID controller, illustrating that in spite of existing of modeling error, the ARX-based PID-SMC is able to better improve the velocity tracking performance of piezoelectric-driven stick slip actuator, compared with the traditional PID controller.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Integral Sliding Mode Controller of a UAV With Considering Actuator Fault

In this paper, using the State Dependent Riccati Equation (SDRE) method, we propose a Robust Optimal Integral Sliding Mode Controller (ROISMC) to guarantee an optimal control law for a quadrotor which has become increasingly important by virtue of its high degrees of manoeuvres ability in presence of unknown time-varying external disturbances and actuator fault. The robustness of the controller...

متن کامل

Non-Singular Terminal Sliding Mode Control of a Nonholonomic Wheeled Mobile Robots Using Fuzzy Based Tyre Force Estimator

This paper, proposes a methodology to implement a suitable nonsingular terminal sliding mode controller associated with the output feedback control to achieve a successful trajectory tracking of a non-holonomic wheeled mobile robot in presence of longitudinal and lateral slip accompanied. This implementation offers a relatively faster and high precision tracking performance. We investigate this...

متن کامل

Active Vibration Suppression of a Nonlinear Flexible Spacecraft

In this article, the issue of attitude control and active vibration suppression of a nonlinear flexible spacecraft is assessed through piezoelectric patches as actuator and sensors. Two controller loops are applied: the inner loop, to make the panel vibration damped through piezoelectric patches; and the outer loop, to perform spacecraft maneuver using the reaction wheel acting on the hub. An o...

متن کامل

Robust Controller Design Based on Sliding Mode Observer in The Presence of Uncertainties and Actuator Saturation

This paper studies the design of a robust output feedback controller subject to actuator saturation. For this purpose, a robust high-gain sliding mode observer is used to estimate the state variables. Moreover, the combination of Composite Nonlinear Feedback (CNF) and Integral Sliding Mode (ISM) controllers are used for robust output tracking. This controller consists of two parts, the CNF part...

متن کامل

An Output Tracking Integrated Discrete PID-based Sliding Mode Control on SISO Systems

SMC (sliding mode control) has been widely employed to compensate for the system uncertainty and disturbance. However, the chattering problem, caused by the discontinuous characteristic of switching function used in traditional SMC, greatly deteriorates the performance of SMC and has become the main limitation for its applications. Also, implementing the SMC in digital systems could make it eve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015