Homogeneous Charge Compression Ignition (HCCI) Combustion Engine- A Review
نویسندگان
چکیده
At present, it is highly required from the automobile sector to develop clean technologies with lower fuel consumption for ambient air quality improvement, green house gas reduction and energy security. Furthermore, due to continuously stringent emission legislation and the fast depletion of the primary energy resources, the development of new highly efficient and environment friendly combustion systems becomes of paramount importance and hence research need to be done in this area. One such combustion system is Homogeneous Charge Compression Ignition (HCCI) technology, which has the potential to reduce oxides of nitrogen (NOx) and particulate matter (PM) simultaneously maintaining the thermal efficiency at par with that of conventional diesel engine combustion. However, some issues such as combustion phasing control, controlled auto-ignition, operating range, homogeneous charge preparation, cold start, pressure rise rate and noise and emissions of unburned hydro carbon (UHC), and carbon monoxide (CO) need to be solved for successful operation and therefore commercial application of HCCI engine. Other similar combustion concepts, which can be considered as the extension of HCCI, are Low Temperature Combustion (LTC) and Stratified Charge Compression Ignition (SCCI). This paper reviews all the three advanced combustion concepts along with their merits and demerits.
منابع مشابه
Studying the Effect of Reformer Gas and Exhaust Gas Recirculation on Homogeneous Charge Compression Ignition Engine Operation
Combustion in homogeneous charge compression ignition (HCCI) engine is controlled auto ignition of well-mixed fuel, air and residual gas. Since onset of HCCI combustion depends on the auto ignition of fuel/air mixture, there is no direct control on the start of combustion process. Therefore, HCCI combustion becomes unstable rather easily especially at lower and higher engine load. Charge strati...
متن کاملEffect of Hydrogen Addition to Natural Gas on Homogeneous Charge Compression Ignition Combustion Engines Performance and Emissions Using a Thermodynamic Simulation
The HCCI combustion process is initiated due to auto-ignition of fuel/air mixture which is dominated by chemical kinetics and therefore fuel composition has a significant effect on engine operation and a detailed reaction mechanism is essential to analysis HCCI combustion. A single zone-model permits to have a detailed chemical kinetics modeling for practical fuels. In this study a single-zone ...
متن کاملEffect of Initial Temperature and EGR on Combustion and Performance Characteristics of Homogenous Charge Compression Ignition Engine Fueled with Dimethyl Ether
Homogeneous Charge Compression Ignition (HCCI) combustion is a pioneer method of combustion in which pre-mixed fuel and oxidizer (typically air) are compressed to the point of auto-ignition. HCCI engines can operate with most alternative fuels, especially, dimethyl ether (DME) which has been tested as a possible diesel fuel due to its simultaneously low NOx and PM emissions. In this paper a ...
متن کاملControl of Homogeneous Charge Compression (HCCI) Ignition Engine Dynamics
The Homogeneous Charge Compression Ignition (HCCI) combustion concept lacks direct ignition timing control, instead the auto ignition depends on the operating condition. Since auto ignition of a homogeneous mixture is very sensitive to operating conditions, a fast combustion timing control is necessary for reliable operation. Hence, feedback is needed and the crank angle of 50% burnt (CA50) has...
متن کاملTheoretical and Experimental Analysis of OM314 Diesel Engine Combustion and Performance Characteristics Fueled with DME
Homogeneous Charge Compression Ignition (HCCI) combustion is a pioneer method of combustion in which pre-mixed fuel and oxidizer (typically air) are compressed to the point of auto-ignition. HCCI engines can operate with most alternative fuels, especially, dimethyl ether (DME) which has been tested as a possible diesel fuel due to its simultaneously low NOx and PM emissions. In this paper a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014