On the Hamiltonian structure of large deviations in stochastic hybrid systems
نویسندگان
چکیده
We develop the connection between large deviation theory and more applied approaches to stochastic hybrid systems by highlighting a common underlying Hamiltonian structure. A stochastic hybrid system involves the coupling between a piecewise deterministic dynamical system in Rd and a time-homogeneous Markov chain on some discrete space Γ. We assume that the Markov chain on Γ is ergodic, and that the discrete dynamics is much faster than the piecewise deterministic dynamics (separation of time-scales). Using the Perron-Frobenius theorem and the calculus-of-variations, we evaluate the rate function of a large deviation principle in terms of a classical action, whose Hamiltonian is given by the Perron eigenvalue of a |Γ|-dimensional linear equation. The corresponding linear operator depends on the transition rates of the Markov chain and the nonlinear functions of the piecewise deterministic system. The resulting Hamiltonian is identical to one derived using path-integrals and WKB methods. We illustrate the theory by considering the example of stochastic ion channels. Finally, we indicate how the analysis can be extended to a multi-scale stochastic process, in which the slow dynamics is described by a piecewise SDE. On the Hamiltonian structure of large deviations in stochastic hybrid systems 2
منابع مشابه
A hybrid meta-heuristic algorithm for the vehicle routing problem with stochastic travel times considering the driver's satisfaction
A vehicle routing problem is a significant problem that has attracted great attention from researchers in recent years. The main objectives of the vehicle routing problem are to minimize the traveled distance, total traveling time, number of vehicles and cost function of transportation. Reducing these variables leads to decreasing the total cost and increasing the driver's satisfaction level. O...
متن کاملFinding the Shortest Hamiltonian Path for Iranian Cities Using Hybrid Simulated Annealing and Ant Colony Optimization Algorithms
The traveling salesman problem is a well-known and important combinatorial optimization problem. The goal of this problem is to find the shortest Hamiltonian path that visits each city in a given list exactly once and then returns to the starting city. In this paper, for the first time, the shortest Hamiltonian path is achieved for 1071 Iranian cities. For solving this large-scale problem, tw...
متن کاملLarge deviations of lattice Hamiltonian dynamics coupled to stochastic thermostats
We discuss the Donsker-Varadhan theory of large deviations in the framework of Hamiltonian systems thermostated by a Gaussian stochastic coupling. We derive a general formula for the Donsker-Varadhan large deviation functional for dynamics which satisfy natural properties under time reversal. Next, we discuss the characterization of the stationary states as the solution of a variational princip...
متن کاملA new stochastic location-allocation emergency medical services healthcare system model during major disaster
From the most important issues in the design of large logistics network in times of crisis are providing a timely quick reaction for treating of injured people and the rapid distribution of medicines and medical equipment. In this paper, a multi-objective model is presented that aims to determine the location of transfer points and hospitals to provide timely quick reaction for treating injured...
متن کاملHybrid Probabilistic Search Methods for Simulation Optimization
Discrete-event simulation based optimization is the process of finding the optimum design of a stochastic system when the performance measure(s) could only be estimated via simulation. Randomness in simulation outputs often challenges the correct selection of the optimum. We propose an algorithm that merges Ranking and Selection procedures with a large class of random search methods for continu...
متن کامل