Sparse linear regression for reconstructing muscle activity from human cortical fMRI

نویسندگان

  • Ganesh Gowrishankar
  • Etienne Burdet
  • Masahiko Haruno
  • Mitsuo Kawato
چکیده

In humans, it is generally not possible to use invasive techniques in order to identify brain activity corresponding to activity of individual muscles. Further, it is believed that the spatial resolution of non-invasive brain imaging modalities is not sufficient to isolate neural activity related to individual muscles. However, this study shows that it is possible to reconstruct muscle activity from functional magnetic resonance imaging (fMRI). We simultaneously recorded surface electromyography (EMG) from two antagonist muscles and motor cortices activity using fMRI, during an isometric task requiring both reciprocal activation and co-activation of the wrist muscles. Bayesian sparse regression was used to identify the parameters of a linear mapping from the fMRI activity in areas 4 (M1) and 6 (pre-motor, SMA) to EMG, and to reconstruct muscle activity in an independent test data set. The mapping obtained by the sparse regression algorithm showed significantly better generalization than those obtained from algorithms commonly used in decoding, i.e., support vector machine and least square regression. The two voxel sets corresponding to the activity of the antagonist muscles were intermingled but disjoint. They were distributed over a wide area of pre-motor cortex and M1 and not limited to regions generally associated with wrist control. These results show that brain activity measured by fMRI in humans can be used to predict individual muscle activity through Bayesian linear models, and that our algorithm provides a novel and non-invasive tool to investigate the brain mechanisms involved in motor control and learning in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-trial reconstruction of finger-pinch forces from human motor-cortical activation measured by near-infrared spectroscopy (NIRS)

Near-infrared spectroscopy (NIRS) has recently been used to measure human motor-cortical activation, enabling the classification of the content of a sensory-motor event such as whether the left or right hand was used. Here, we advance this NIRS application by demonstrating quantitative estimates of multiple sensory-motor events from single-trial NIRS signals. It is known that different degrees ...

متن کامل

Constraint-free Natural Image Reconstruction from fMRI Signals Based on Convolutional Neural Network

In recent years, research on decoding brain activity based on functional magnetic resonance imaging (fMRI) has made remarkable achievements. However, constraint-free natural image reconstruction from brain activity remains a challenge, as specifying brain activity for all possible images is impractical. The existing research simplified the problem by using semantic prior information or just rec...

متن کامل

Using functional magnetic resonance imaging (fMRI) to explore brain function: cortical representations of language critical areas

Pre-operative determination of the dominant hemisphere for speech and speech associated sensory and motor regions has been of great interest for the neurological surgeons. This dilemma has been of at most importance, but difficult to achieve, requiring either invasive (Wada test) or non-invasive methods (Brain Mapping). In the present study we have employed functional Magnetic Resonance Imaging...

متن کامل

Reconstructing for joint angles on the shoulder and elbow from non-invasive electroencephalographic signals through electromyography

In this study, first the cortical activities over 2240 vertexes on the brain were estimated from 64 channels electroencephalography (EEG) signals using the Hierarchical Bayesian estimation while 5 subjects did continuous arm reaching movements. From the estimated cortical activities, a sparse linear regression method selected only useful features in reconstructing the electromyography (EMG) sig...

متن کامل

Using functional magnetic resonance imaging (fMRI) to explore brain function: cortical representations of language critical areas

Pre-operative determination of the dominant hemisphere for speech and speech associated sensory and motor regions has been of great interest for the neurological surgeons. This dilemma has been of at most importance, but difficult to achieve, requiring either invasive (Wada test) or non-invasive methods (Brain Mapping). In the present study we have employed functional Magnetic Resonance Imaging...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 42 4  شماره 

صفحات  -

تاریخ انتشار 2008