Fenton reaction facilitates organic nitrogen acquisition by an ectomycorrhizal fungus

نویسندگان

  • Michiel Op De Beeck
  • Carl Troein
  • Carsten Peterson
  • Per Persson
  • Anders Tunlid
چکیده

Boreal trees rely on their ectomycorrhizal fungal symbionts to acquire growth-limiting nutrients, such as nitrogen (N), which mainly occurs as proteins complexed in soil organic matter (SOM). The mechanisms for liberating this N are unclear as ectomycorrhizal fungi have lost many genes encoding lignocellulose-degrading enzymes present in their saprotrophic ancestors. We hypothesized that hydroxyl radicals (˙ OH), produced by the ectomycorrhizal fungus Paxillus involutus during growth on SOM, are involved in liberating organic N. Paxillus involutus was grown for 7 d on N-containing or N-free substrates that represent major organic compounds of SOM. ˙ OH production, ammonium assimilation, and proteolytic activity were measured daily. ˙ OH production was strongly induced when P. involutus switched from ammonium to protein as the main N source. Extracellular proteolytic activity was initiated shortly after the oxidation. Oxidized protein substrates induced higher proteolytic activity than unmodified proteins. Dynamic modeling predicted that ˙ OH production occurs in a burst, regulated mainly by ammonium and ferric iron concentrations. We propose that the production of ˙ OH and extracellular proteolytic enzymes are regulated by similar nutritional signals. Oxidation works in concert with proteolysis, improving N liberation from proteins in SOM. Organic N mining by ectomycorrhizal fungi has, until now, only been attributed to proteolysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involutin Is an Fe3+ Reductant Secreted by the Ectomycorrhizal Fungus Paxillus involutus during Fenton-Based Decomposition of Organic Matter

Ectomycorrhizal fungi play a key role in mobilizing nutrients embedded in recalcitrant organic matter complexes, thereby increasing nutrient accessibility to the host plant. Recent studies have shown that during the assimilation of nutrients, the ectomycorrhizal fungus Paxillus involutus decomposes organic matter using an oxidative mechanism involving Fenton chemistry (Fe(2+) + H2O2 + H(+) → Fe...

متن کامل

Involutin Is an Fe Reductant Secreted by the Ectomycorrhizal Fungus Paxillus involutus during Fenton-Based Decomposition of Organic Matter

Ectomycorrhizal fungi play a key role in mobilizing nutrients embedded in recalcitrant organic matter complexes, thereby increasing nutrient accessibility to the host plant. Recent studies have shown that during the assimilation of nutrients, the ectomycorrhizal fungus Paxillus involutus decomposes organic matter using an oxidative mechanism involving Fenton chemistry (Fe H2O2 H ¡ Fe ̇OH H2O), s...

متن کامل

The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry

Soils in boreal forests contain large stocks of carbon. Plants are the main source of this carbon through tissue residues and root exudates. A major part of the exudates are allocated to symbiotic ectomycorrhizal fungi. In return, the plant receives nutrients, in particular nitrogen from the mycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant orga...

متن کامل

The molecular components of the extracellular protein-degradation pathways of the ectomycorrhizal fungus Paxillus involutus

Proteins contribute to a major part of the organic nitrogen (N) in forest soils. This N is mobilized and becomes available to trees as a result of the depolymerizing activities of symbiotic ectomycorrhizal fungi. The mechanisms by which these fungi depolymerize proteins and assimilate the released N are poorly characterized. Biochemical analysis and transcriptome profiling were performed to exa...

متن کامل

Plasticity and constraint in growth and protein mineralization of ectomycorrhizal fungi under simulated nitrogen deposition.

Ectomycorrhizal fungi allow their host plants access to organic forms of N through enzymatic mineralization of the substrate and enhanced absorption of amino acids and mineral N. The cost to the plant is carbohydrates that support fungal growth and metabolism. Enrichment of soils with mineral N, as through atmospheric deposition, may affect the growth and function of these fungi by direct effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 218  شماره 

صفحات  -

تاریخ انتشار 2018