Gauss-manin Connections for Arrangements, Ii Nonresonant Weights

نویسندگان

  • DANIEL C. COHEN
  • PETER ORLIK
  • P. ORLIK
چکیده

We study the Gauss-Manin connection for the moduli space of an arrangement of complex hyperplanes in the cohomology of a nonresonant complex rank one local system. Aomoto and Kita determined this GaussManin connection for arrangements in general position. We use their results and an algorithm constructed in this paper to determine this Gauss-Manin connection for all arrangements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gauss-manin Connections for Arrangements, Iv Nonresonant Eigenvalues

An arrangement is a finite set of hyperplanes in a finite dimensional complex affine space. A complex rank one local system on the arrangement complement is determined by a set of complex weights for the hyperplanes. We study the Gauss-Manin connection for the moduli space of arrangements of fixed combinatorial type in the cohomology of the complement with coefficients in the local system deter...

متن کامل

Gauss-manin Connections for Arrangements

We construct a formal connection on the Aomoto complex of an arrangement of hyperplanes, and use it to study the Gauss-Manin connection for the moduli space of the arrangement in the cohomology of a complex rank one local system. We prove that the eigenvalues of the Gauss-Manin connection are integral linear combinations of the weights which define the local system.

متن کامل

Gauss-manin Connections for Arrangements, Iii Formal Connections

We study the Gauss-Manin connection for the moduli space of an arrangement of complex hyperplanes in the cohomology of a complex rank one local system. We define formal Gauss-Manin connection matrices in the Aomoto complex and prove that, for all arrangements and all local systems, these formal connection matrices specialize to Gauss-Manin connection matrices.

متن کامل

2 00 4 Calculation of mixed Hodge structures , Gauss - Manin connections and Picard - Fuchs equations

In this article we introduce algorithms which compute iterations of Gauss-Manin connections, Picard-Fuchs equations of Abelian integrals and mixed Hodge structure of affine varieties of dimension n in terms of differential forms. In the case n = 1 such computations have many applications in differential equations and counting their limit cycles. For n > 3, these computations give us an explicit...

متن کامل

A Formula for Gauss-manin Determinants

Let K be a function field over a field k of characteristic 0, and let j : U ⊂ PK be a Zariski open set of the projective line. We consider a flat connection (E,∇) on U . The de Rham cohomology groups H i DR(U/K,∇/K) carry a K/k connection, the Gauß-Manin connection, and taking the alternate tensor of the determinant connections ⊗(detH i DR(U/K,∇/K),Gauß−Manin) (−1)i , one defines the Gauß-Manin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002