Estimates of Automorphic Functions
نویسندگان
چکیده
We present a new method to estimate trilinear period for automorphic representations of SL2(R). The method is based on the uniqueness principle in representation theory. We show how to separate the exponentially decaying factor in the triple period from the essential automorphic factor which behaves polynomially. We also describe a general method which gives an estimate on the average of the automorphic factor and thus prove a convexity bound for the triple period.
منابع مشابه
On tensor product $L$-functions and Langlands functoriality
In the spirit of the Langlands proposal on Beyond Endoscopy we discuss the explicit relation between the Langlands functorial transfers and automorphic $L$-functions. It is well-known that the poles of the $L$-functions have deep impact to the Langlands functoriality. Our discussion also includes the meaning of the central value of the tensor product $L$-functions in terms of the Langl...
متن کاملAlmost Automorphic and Pseudo-Almost Automorphic Solutions to Semilinear Evolution Equations with Nondense Domain
In recent years, the theory of almost automorphic functions has been developed extensively see, e.g., Bugajewski and N’guérékata 1 , Cuevas and Lizama 2 , and N’guérékata 3 and the references therein . However, literature concerning pseudo-almost automorphic functions is very new cf. 4 . It is well known that the study of composition of two functions with special properties is important and bas...
متن کاملAutomorphic functions for a Kleinian group
In the paper ‘Automorphic functions for a Whitehead-complement group’ [5], Matsumoto, Nishi and Yoshida constructed automorphic functions on real 3–dimensional hyperbolic space for a Kleinian group called the Whitehead-link-complement group. For a Kleinian group (of the first kind), no automorphic function/form has been studied before. In this note, their motivation is presented with a historic...
متن کاملApplication of the Norm Estimates for Univalence of Analytic Functions
By using norm estimates of the pre-Schwarzian derivatives for certain family of analytic functions, we shall give simple sufficient conditions for univalence of analytic functions.
متن کاملWeak Subconvexity for Central Values of L-functions
A fundamental problem in number theory is to estimate the values of L-functions at the center of the critical strip. The Langlands program predicts that all L-functions arise from automorphic representations of GL(N) over a number field, and moreover that such L-functions can be decomposed as a product of primitive L-functions arising from irreducible cuspidal representations of GL(n) over Q. T...
متن کامل