Carbon-Degrading Enzyme Activities Stimulated by Increased Nutrient Availability in Arctic Tundra Soils
نویسندگان
چکیده
Climate-induced warming of the Arctic tundra is expected to increase nutrient availability to soil microbes, which in turn may accelerate soil organic matter (SOM) decomposition. We increased nutrient availability via fertilization to investigate the microbial response via soil enzyme activities. Specifically, we measured potential activities of seven enzymes at four temperatures in three soil profiles (organic, organic/mineral interface, and mineral) from untreated native soils and from soils which had been fertilized with nitrogen (N) and phosphorus (P) since 1989 (23 years) and 2006 (six years). Fertilized plots within the 1989 site received annual additions of 10 g N · m(-2) · year(-1) and 5 g P · m(-2) · year(-1). Within the 2006 site, two fertilizer regimes were established--one in which plots received 5 g N · m(-2) · year(-1) and 2.5 g P · m(-2) · year(-1) and one in which plots received 10 g N · m(-2) · year(-1) and 5 g P · m(-2) · year(-1). The fertilization treatments increased activities of enzymes hydrolyzing carbon (C)-rich compounds but decreased phosphatase activities, especially in the organic soils. Activities of two enzymes that degrade N-rich compounds were not affected by the fertilization treatments. The fertilization treatments increased ratios of enzyme activities degrading C-rich compounds to those for N-rich compounds or phosphate, which could lead to changes in SOM chemistry over the long term and to losses of soil C. Accelerated SOM decomposition caused by increased nutrient availability could significantly offset predicted increased C fixation via stimulated net primary productivity in Arctic tundra ecosystems.
منابع مشابه
Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils
The pool of soil organic carbon (SOC) in the Arctic is disproportionally large compared to those in other biomes. This large quantity of SOC accumulated over millennia due to slow rates of decomposition relative to net primary productivity. Decomposition is constrained by low temperatures and nutrient concentrations, which limit soil microbial activity. We investigated how nutrients limit bacte...
متن کاملFungi Benefit from Two Decades of Increased Nutrient Availability in Tundra Heath Soil
If microbial degradation of carbon substrates in arctic soil is stimulated by climatic warming, this would be a significant positive feedback on global change. With data from a climate change experiment in Northern Sweden we show that warming and enhanced soil nutrient availability, which is a predicted long-term consequence of climatic warming and mimicked by fertilization, both increase soil ...
متن کاملDIVISION S-3—SOIL BIOLOGY & BIOCHEMISTRY Soil Nitrogen, Microbial Biomass, and Respiration along an Arctic Toposequence
than other regions of the world (Mitchell et al., 1990; Maxwell, 1992). Summer air temperatures in northern To investigate the interactions among mineral N, C availability, Alaska are predicted to increase 3 to 68C over current microbial biomass, and respiration in arctic soils, we sampled soils five times during a growing season from a toposequence on a slope levels, whereas precipitation duri...
متن کاملMicrobial and Biogeochemical Dynamics in Glacier Forefields Are Sensitive to Century-Scale Climate and Anthropogenic Change
The recent retreat of glaciers and ice sheets as a result of global warming exposes forefield soils that are rapidly colonized by microbes. These ecosystems are dominant in high-latitude carbon and nutrient cycles as microbial activity drives biogeochemical transformations within these newly exposed soils. Despite this, little is known about the response of these emerging ecosystems and associa...
متن کاملEnzymology under global change: organic nitrogen turnover in alpine and sub-Arctic soils.
Understanding global change impacts on the globally important carbon storage in alpine, Arctic and sub-Arctic soils requires knowledge of the mechanisms underlying the balance between plant primary productivity and decomposition. Given that nitrogen availability limits both processes, understanding the response of the soil nitrogen cycle to shifts in temperature and other global change factors ...
متن کامل