Simple and Trustworthy Cluster-Robust GMM Inference
نویسندگان
چکیده
This paper develops a new asymptotic theory for two-step GMM estimation and inference in the presence of clustered dependence. The key feature of alternative asymptotics is the number of clusters G is regarded as small or fixed when the sample size increases. Under the small-G asymptotics, this paper shows the centered two-step GMM estimator and the two continuously-updating GMM estimators we consider have the same asymptotic mixed normal distribution. In addition, the J statistic, the trinity of two-step GMM statistics (QLR, LM and Wald), and the t statistic are all asymptotically pivotal, and each can be modified to have an asymptotic standard F distribution or t distribution. We suggest a finite sample variance correction to further improve the accuracy of the F and t approximations. Our proposed asymptotic F and t tests are very appealing to practitioners because our test statistics are simple modifications of the usual test statistics, and critical values are readily available from standard statistical tables. A Monte Carlo study shows that our proposed tests are more accurate than the conventional inferences under the large-G asymptotics. JEL Classification: C12, C21, C23, C31
منابع مشابه
Robust inference with GMM estimators
The local robustness properties of generalized method of moments (GMM) estimators and of a broad class of GMM based tests are investigated in a uni"ed framework. GMM statistics are shown to have bounded in#uence if and only if the function de"ning the orthogonality restrictions imposed on the underlying model is bounded. Since in many applications this function is unbounded, it is useful to hav...
متن کاملADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE
The tunnel boring machine (TBM) penetration rate estimation is one of the crucial and complex tasks encountered frequently to excavate the mechanical tunnels. Estimating the machine penetration rate may reduce the risks related to high capital costs typical for excavation operation. Thus establishing a relationship between rock properties and TBM pe...
متن کاملRobust small sample accurate inference in moment condition models
Procedures based on the Generalized Method of Moments (GMM) (Hansen, 1982) are basic tools in modern econometrics. In most cases, the theory available for making inference with these procedures is based on first order asymptotic theory. It is well-known that the (first order) asymptotic distribution does not provide accurate p-values and confidence intervals in moderate to small samples. Moreov...
متن کاملGmm Estimation and Uniform Subvector Inference with Possible Identification Failure By
This paper determines the properties of standard generalized method of moments (GMM) estimators, tests, and confidence sets (CSs) in moment condition models in which some parameters are unidentified or weakly identified in part of the parameter space. The asymptotic distributions of GMM estimators are established under a full range of drifting sequences of true parameters and distributions. The...
متن کاملGmm Estimation and Uniform Subvector Inference with Possible Identification Failure
This paper determines the properties of standard generalized method of moments (GMM) estimators, tests, and confidence sets (CSs) in moment condition models in which some parameters are unidentified or weakly identified in part of the parameter space. The asymptotic distributions of GMM estimators are established under a full range of drifting sequences of true parameters and distributions. The...
متن کامل