Simple and Trustworthy Cluster-Robust GMM Inference

نویسندگان

  • Jungbin Hwang
  • Yixiao Sun
  • Graham Elliott
  • Andres Santos
چکیده

This paper develops a new asymptotic theory for two-step GMM estimation and inference in the presence of clustered dependence. The key feature of alternative asymptotics is the number of clusters G is regarded as small or fixed when the sample size increases. Under the small-G asymptotics, this paper shows the centered two-step GMM estimator and the two continuously-updating GMM estimators we consider have the same asymptotic mixed normal distribution. In addition, the J statistic, the trinity of two-step GMM statistics (QLR, LM and Wald), and the t statistic are all asymptotically pivotal, and each can be modified to have an asymptotic standard F distribution or t distribution. We suggest a finite sample variance correction to further improve the accuracy of the F and t approximations. Our proposed asymptotic F and t tests are very appealing to practitioners because our test statistics are simple modifications of the usual test statistics, and critical values are readily available from standard statistical tables. A Monte Carlo study shows that our proposed tests are more accurate than the conventional inferences under the large-G asymptotics. JEL Classification: C12, C21, C23, C31

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust inference with GMM estimators

The local robustness properties of generalized method of moments (GMM) estimators and of a broad class of GMM based tests are investigated in a uni"ed framework. GMM statistics are shown to have bounded in#uence if and only if the function de"ning the orthogonality restrictions imposed on the underlying model is bounded. Since in many applications this function is unbounded, it is useful to hav...

متن کامل

ADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE

The  tunnel  boring  machine  (TBM)  penetration  rate  estimation  is  one  of  the  crucial  and complex  tasks  encountered  frequently  to  excavate  the  mechanical  tunnels.  Estimating  the machine  penetration  rate  may  reduce  the  risks  related  to  high  capital  costs  typical  for excavation  operation.  Thus  establishing  a  relationship  between  rock  properties  and  TBM pe...

متن کامل

Robust small sample accurate inference in moment condition models

Procedures based on the Generalized Method of Moments (GMM) (Hansen, 1982) are basic tools in modern econometrics. In most cases, the theory available for making inference with these procedures is based on first order asymptotic theory. It is well-known that the (first order) asymptotic distribution does not provide accurate p-values and confidence intervals in moderate to small samples. Moreov...

متن کامل

Gmm Estimation and Uniform Subvector Inference with Possible Identification Failure By

This paper determines the properties of standard generalized method of moments (GMM) estimators, tests, and confidence sets (CSs) in moment condition models in which some parameters are unidentified or weakly identified in part of the parameter space. The asymptotic distributions of GMM estimators are established under a full range of drifting sequences of true parameters and distributions. The...

متن کامل

Gmm Estimation and Uniform Subvector Inference with Possible Identification Failure

This paper determines the properties of standard generalized method of moments (GMM) estimators, tests, and confidence sets (CSs) in moment condition models in which some parameters are unidentified or weakly identified in part of the parameter space. The asymptotic distributions of GMM estimators are established under a full range of drifting sequences of true parameters and distributions. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016