MSH2 ATPase Domain Mutation Affects CTG•CAG Repeat Instability in Transgenic Mice
نویسندگان
چکیده
Myotonic dystrophy type 1 (DM1) is associated with one of the most highly unstable CTG*CAG repeat expansions. The formation of further repeat expansions in transgenic mice carrying expanded CTG*CAG tracts requires the mismatch repair (MMR) proteins MSH2 and MSH3, forming the MutSbeta complex. It has been proposed that binding of MutSbeta to CAG hairpins blocks its ATPase activity compromising hairpin repair, thereby causing expansions. This would suggest that binding, but not ATP hydrolysis, by MutSbeta is critical for trinucleotide expansions. However, it is unknown if the MSH2 ATPase activity is dispensible for instability. To get insight into the mechanism by which MSH2 generates trinucleotide expansions, we crossed DM1 transgenic mice carrying a highly unstable >(CTG)(300) repeat tract with mice carrying the G674A mutation in the MSH2 ATPase domain. This mutation impairs MSH2 ATPase activity and ablates base-base MMR, but does not affect the ability of MSH2 (associated with MSH6) to bind DNA mismatches. We found that the ATPase domain mutation of MSH2 strongly affects the formation of CTG expansions and leads instead to transmitted contractions, similar to a Msh2-null or Msh3-null deficiency. While a decrease in MSH2 protein level was observed in tissues from Msh2(G674) mice, the dramatic reduction of expansions suggests that the expansion-biased trinucleotide repeat instability requires a functional MSH2 ATPase domain and probably a functional MMR system.
منابع مشابه
MSH3 Polymorphisms and Protein Levels Affect CAG Repeat Instability in Huntington's Disease Mice
Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show varia...
متن کاملMutSβ abundance and Msh3 ATP hydrolysis activity are important drivers of CTG•CAG repeat expansions
CTG•CAG repeat expansions cause at least twelve inherited neurological diseases. Expansions require the presence, not the absence, of the mismatch repair protein MutSβ (Msh2-Msh3 heterodimer). To evaluate properties of MutSβ that drive expansions, previous studies have tested under-expression, ATPase function or polymorphic variants of Msh2 and Msh3, but in disparate experimental systems. Addit...
متن کاملLarge expansion of CTG•CAG repeats is exacerbated by MutSβ in human cells
Trinucleotide repeat expansion disorders (TRED) are caused by genomic expansions of trinucleotide repeats, such as CTG and CAG. These expanded repeats are unstable in germline and somatic cells, with potential consequences for disease severity. Previous studies have demonstrated the involvement of DNA repair proteins in repeat instability, although the key factors affecting large repeat expansi...
متن کاملMsh2 Acts in Medium-Spiny Striatal Neurons as an Enhancer of CAG Instability and Mutant Huntingtin Phenotypes in Huntington’s Disease Knock-In Mice
The CAG trinucleotide repeat mutation in the Huntington's disease gene (HTT) exhibits age-dependent tissue-specific expansion that correlates with disease onset in patients, implicating somatic expansion as a disease modifier and potential therapeutic target. Somatic HTT CAG expansion is critically dependent on proteins in the mismatch repair (MMR) pathway. To gain further insight into mechanis...
متن کاملProofreading and secondary structure processing determine the orientation dependence of CAG x CTG trinucleotide repeat instability in Escherichia coli.
Expanded CAG x CTG trinucleotide repeat tracts are associated with several human inherited diseases, including Huntington's disease, myotonic dystrophy, and spinocerebellar ataxias. Here we describe a new model system to investigate repeat instability in the Escherichia coli chromosome. Using this system, we reveal patterns of deletion instability consistent with secondary structure formation i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Genetics
دوره 5 شماره
صفحات -
تاریخ انتشار 2009