On the Distribution of Three-Term Arithmetic Progressions in Sparse Subsets of Fpn

نویسنده

  • Hoi H. Nguyen
چکیده

We give a short proof for the following result on the distribution of three-term arithmetic progressions in sparse subsets of Fp : for every α > 0 there exists a constant C = C(α) such that the following holds for all r ≥ Cp and for almost all sets R of size r of Fp . Let A be any subset of R of size at least αr, then A contains a non-trivial three-term arithmetic progression. This is an analog of a hard theorem by Kohayakawa, Luczak, and Rödl. The proof uses a version of Green’s regularity lemma for subsets of a typical random set, which is of interest of its own.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON DISTRIBUTION OF THREE-TERM ARITHMETIC PROGRESSIONS IN SPARSE SUBSETS OF Fp

We prove a version of Szemerédi’s regularity lemma for subsets of a typical random set in F p . As an application, a result on the distribution of three-term arithmetic progressions in sparse sets is discussed.

متن کامل

On rainbow 4-term arithmetic progressions

{sl Let $[n]={1,dots, n}$ be colored in $k$ colors. A rainbow AP$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. Conlon, Jungi'{c} and Radoiv{c}i'{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow AP(4) free, when $n$ is even. Based on their construction, we show that such a coloring of $[4n]$...

متن کامل

Subsets of Fpn without three term arithmetic progressions have several large Fourier coefficients

Suppose that f : Fpn → [0, 1] satisfies Σaf(m) = θF ∈ [F , F ], where F = |Fpn | = p. In this paper we will show the following: Let fj denote the size of the jth largest Fourier coefficient of f . If fj < θ j1/2+δF, for some integer j satisfying J0(δ, p) < j < F , then S = support(f) contains a non-trivial three-term arithmetic progression. Thus, the result is asserting that if the Fourier tran...

متن کامل

On the Decay of the Fourier Transform and Three Term Arithmetic Progressions

In this paper we prove a basic theorem which says that if f : Fpn → [0, 1] has few ‘large’ Fourier coefficients, and if the sum of the norms squared of the ‘small’ Fourier coefficients is ‘small’ (i.e. the L2 mass of f̂ is not concetrated on small Fourier coefficients), then Σn,df(n)f(n+ d)f(n + 2d) is ‘large’. If f is the indicator function for some set S, then this would be saying that the set...

متن کامل

Arithmetic Progressions of Length Three in Subsets of a Random Set

For integers 1 ≤ M ≤ n, let R(n,M) denote the uniform probability space which consists of all the M -element subsets of [n] = {0, 1, . . . , n − 1}. It is shown that for every α > 0 there exists a constant C such that if M = M(n) ≥ C √ n then, with probability tending to 1 as n → ∞, the random set R ∈ R(n,M) has the property that any subset of R with at least α|R| elements contains a 3-term ari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorics, Probability & Computing

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2011