Fuel Droplet Evaporation in a Supercritical Environment
نویسندگان
چکیده
This paper reports a numerical investigation of the transcritical droplet vaporization phenomena. The simulation is based on the time-dependent conservation equations for liquid and gas phases, pressure-dependent variable thermophysical properties, and a detailed treatment of liquid-vapor phase equilibrium at the droplet surface. The numerical solution of the two-phase equations employs an arbitrary Eulerian-Lagrangian, explicitimplicit method with a dynamically adaptive mesh. Three different equations of state (EOS), namely the Redlich-Kwong (RK), the Peng-Robinson (PR), and Soave-RedlichKwong (SRK) EOS, are employed to represent phase equilibrium at the droplet surface. In addition, two different methods are used to determine the liquid density. Results indicate that the predictions of RK-EOS are significantly different from those obtained by using the RK-EOS and SRK-EOS. For the phase-equilibrium of n-heptane-nitrogen system, the RK-EOS predicts higher liquid-phase solubility of nitrogen, higher fuel vapor concentration, lower critical-mixing-state temperature, and lower enthalpy of vaporization. As a consequence, it significantly overpredicts droplet vaporization rates, and underpredicts droplet lifetimes compared to those predicted by PR and SRK-EOS. In contrast, predictions using the PR-EOS and SRK-EOS show excellent agreement with each other and with experimental data over a wide range of conditions. A detailed investigation of the transcritical droplet vaporization phenomena indicates that at low to moderate ambient temperatures, the droplet lifetime first increases and then decreases as the ambient pressure is increased. At high ambient temperatures, however, the droplet lifetime decreases monotonically with pressure. This behavior is in accord with the reported experimental data. @DOI: 10.1115/1.1385198#
منابع مشابه
Evaporation Characteristics of Diesel and Biodiesel Fuel Droplets on Hot Surfaces
In CI engines, the evaporation rate of fuel on various hot surfaces, including the combustion chamber, has a significant effect on deposit formation and accumulation, the exhaust emissions of PM and NOx, and their efficiency. Therefore, the evaporation of liquid fuel droplets impinging on hot surfaces has become an important subject of interest to engine designers, manufacturers, and researcher...
متن کاملComparative Analysis of a Single Fuel Droplet Evaporation
In this research, the results of comparative analysis of a single fuel droplet evaporation models are presented. Three well-known evaporation models including Spalding, Borman-Johnson and Abramzon-Sirignano models are analyzed using Computational Fluid Dynamic (CFD). The original Spalding model is extended to consider the effects of the Stefan flow, unsteady vaporization, and variable propertie...
متن کاملSubcritical and Supercritical Nanodroplet Evaporation: a Molecular Dynamics Investigation
Molecular dynamics simulations are used to investigate the subcritical and supercritical evaporation of a Lennard-Jones (LJ) argon nanodroplet in its own vapor. Using a new technique to control both the ambient temperature and pressure, a range of conditions are considered to define a transition line between subcritical and supercritical evaporation. The evaporation is considered to be supercri...
متن کاملDroplet evaporation: A molecular dynamics investigation
Molecular dynamics simulations are used to model the evaporation of a Lennard–Jones argon nanodroplet into its own vapor for a wide range of ambient temperatures and ambient pressures. The transitions from i high to low Knudsen number evaporation and ii subcritical to supercritical evaporation are observed. At a low ambient pressure of 0.4 MPa, the initial droplet Knudsen number is 1 and the dr...
متن کاملMulticomponent and High-Pressure Effects on Droplet Vaporization
This paper deals with the multicomponent nature of gas turbine fuels under high-pressure conditions. The study is motivated by the consideration that the droplet submodels that are currently employed in spray codes for predicting gas turbine combustor flows do not adequately incorporate the multicomponent fuel and high-pressure effects. The quasisteady multicomponent droplet model has been empl...
متن کامل