Simulation of non-gaussian processes

نویسنده

  • K. R. Gurley
چکیده

The paper introduces a new non-Gaussian simulation method that matches a target power spectrum and probability information. Numerical studies demonstrate applicability, convergence, and stationary properties. The method is shown to encompass a larger envelope of spectral/probabilistic descriptions than correlation distortion based methods. Specifically, the method is not constrained to relatively wide-banded nonGaussian processes. Extensions to multivariate and conditional simulation are briefly discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Rate of Entropy for Gaussian Processes

In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...

متن کامل

Complete convergence of moving-average processes under negative dependence sub-Gaussian assumptions

The complete convergence is investigated for moving-average processes of doubly infinite sequence of negative dependence sub-gaussian random variables with zero means, finite variances and absolutely summable coefficients. As a corollary, the rate of complete convergence is obtained under some suitable conditions on the coefficients.

متن کامل

Simulation of multivariate non-gaussian autoregressive time series with given autocovariance and marginals

A semi-analytic method is proposed for the generation of realizations of a multivariate process of a given linear correlation structure and marginal distribution. This is an extension of a similar method for univariate processes, transforming the autocorrelation of the non-Gaussian process to that of a Gaussian process based on a piece-wise linear marginal transform from non-Gaussian to Gaussia...

متن کامل

Simulation of Sample Paths of Non Gaussian Stationary Random Fields

Mathematical justifications are given for a simulation technique of multivariate nonGaussian random processes and fields based on Rosenblatt’s transformation of Gaussian processes. Different types of convergences are given for the approaching sequence. Moreover an original numerical method is proposed in order to solve the functional equation yielding the underlying Gaussian process autocorrela...

متن کامل

Simulation of non-Gaussian processes using fractile correlation

The difficulties of simulating non-Gaussian stochastic processes to follow arbitrary product–moment covariance models and arbitrary non-Gaussian marginal distributions are well known. This paper proposes to circumvent these difficulties by prescribing a fractile correlation function, rather than the usual product–moment covariance function. This fractile correlation can be related to the produc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998