A series of D-amino acid oxidase inhibitors specifically prevents and reverses formalin-induced tonic pain in rats.
نویسندگان
چکیده
We have found that mutation of D-amino acid oxidase (DAO) diminished formalin-induced tonic pain. The present research further studied the analgesic effects of a series of DAO inhibitors in this model. 5-Chlorobenzo[d]isoxazol-3-ol (CBIO), 4H-thieno[3,2-b]pyrrole-5-carboxylic acid (compound 8), 5-methylpyrazole-3-carboxylic acid (AS057278), sodium benzoate, and 4-nitro-3-pyrazole carboxylic acid (NPCA) inhibited rat spinal cord-derived DAO activity in a concentration-dependent manner, with maximal inhibition of 100% and potency rank of CBIO > compound 8 > AS057278 > sodium benzoate > NPCA. In rats, intrathecal injections of CBIO, compound 8, AS057278, and sodium benzoate but not NPCA specifically prevented formalin-induced tonic pain but not acute nociception, with the same potency order as in the DAO activity assay. The highly potent analgesia of DAO inhibitors was evidenced by CBIO, which prevented 50% pain at 0.06 μg, approximately 5-fold the potency of morphine. CBIO given after formalin challenge also reversed the established pain state to the same degree as prevention. The antihyperalgesic potencies of these DAO inhibitors were highly correlated to their inhibitions of spinal DAO activity. Maximum inhibition of pain by these compounds was approximately 60%, comparable with that of the N-methyl-D-aspartic acid receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801), suggesting that a larger portion of formalin-induced tonic pain is "DAO-sensitive," whereas the remaining 40% of tonic pain and acute nociception is "DAO-insensitive." These findings, combined with our previous DAO gene mutation and induction results, indicate spinal DAO mediates both induction and maintenance of formalin-induced tonic pain and further validate spinal DAO as a novel and efficacious target molecule for the treatment of chronic pain.
منابع مشابه
Spinal D-amino acid oxidase contributes to neuropathic pain in rats.
D-amino acid oxidase (DAO) is an enzyme catalyzing oxidative deamination of neutral and polar d-amino acids and is expressed in the kidneys, liver, and central nervous system (CNS) including the spinal cord. We have previously demonstrated that DAO gene deletion/mutation by using mutant ddY/DAO(-/-) mice and systemic administration of the DAO inhibitor sodium benzoate blocked formalin-induced h...
متن کاملSpinally mediated analgesic interaction between γ-aminobutyric acid B receptor agonist and glutamate receptor antagonists in rats
Background. Many mechanisms are involved in pain transmission in the spinal cord. Therefore, combination of drugs acting on different kinds of mechanisms might be useful for analgesia. We investigated the interaction betweenγ-aminobutyric acid (GABA)B receptor agonist, baclofen, and N-methyl-D-aspartate (NMDA) receptor antagonist, AP-5, orα-amino-3-hydroxy-5-methylisoxazole-4-propionic acid ...
متن کاملEffect of pilocarpine on the formalin-induced orofacial pain in rat
In this study, the effects of subcutaneous (SC) injection of pilocarpine (a cholinomimetic agent) and atropine (a muscarinic receptors antagonist) were investigated on a tonic model of orofacial pain in rats. The contribution of the endogenous analgesic opioid system was assessed using naloxone (an opioid receptors antagonist). Tonic orofacial pain was induced by SC injection of a diluted forma...
متن کاملThe effects of lesions of the nucleus reticularis paragigantocellularis on tonic pain
In the present study, the effect of contralateral and bilateral electrolytic lesions of the nucleus reticularis paragigantocellularis (PGi) on tonic pain was assessed in rats. Pain-related behavior was evaluated using the formalin test 7 days after the lesion was made. PGi lesions did not produce any marked changes in the early phase of the formalin test, but significantly increased pain sens...
متن کاملAlterations of noradrenalin and one of its metabolites in the Locus Coeroleus nucleus in formalin induced pain in anesthetized rat
Introduction: Pain as a complex process in central nervous system (CNS) has been studied by many researchers. Pain is controlled by several CNS pathways, one of the most important of which, is the descending noradrenergic system. This system begins from locus coeruleus (LC) nucleus in pons and ends in the spinal cord. In this research, the effect of pain induced by formalin was studied. Met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 336 1 شماره
صفحات -
تاریخ انتشار 2011