Estimating Driver Performance Using Multiple Electroencephalography (EEG)-Based Regression Algorithms
نویسندگان
چکیده
NOTICES Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof. Destroy this report when it is no longer needed. Do not return it to the originator.
منابع مشابه
Comparing Contribution of Algorithm Based Physiological Indicators for Characterisation of Driver Drowsiness
The algorithm based physiological characteristics of driver drowsiness – ocular parameters (derived from the frontal electroencephalogram (EEG)), EEG alpha bursts and spectral power (derived from the central and occipital sites) as well as heart rate variability (HRV) were estimated from data derived during a driving simulator experiment (30 non-professional drivers). The statistical associatio...
متن کاملClassification of EEG-based motor imagery BCI by using ECOC
AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...
متن کاملDriver Fatigue Detection System Using Electroencephalography Signals Based on Combined Entropy Features
Driver fatigue has become one of the major causes of traffic accidents, and is a complicated physiological process. However, there is no effective method to detect driving fatigue. Electroencephalography (EEG) signals are complex, unstable, and non-linear; non-linear analysis methods, such as entropy, maybe more appropriate. This study evaluates a combined entropy-based processing method of EEG...
متن کاملEstimation of Eye Closure Degree Using EEG Sensors and Its Application in Driver Drowsiness Detection
Currently, driver drowsiness detectors using video based technology is being widely studied. Eyelid closure degree (ECD) is the main measure of the video-based methods, however, drawbacks such as brightness limitations and practical hurdles such as distraction of the drivers limits its success. This study presents a way to compute the ECD using EEG sensors instead of video-based methods. The pr...
متن کاملDriver fatigue detection through multiple entropy fusion analysis in an EEG-based system
Driver fatigue is an important contributor to road accidents, and fatigue detection has major implications for transportation safety. The aim of this research is to analyze the multiple entropy fusion method and evaluate several channel regions to effectively detect a driver's fatigue state based on electroencephalogram (EEG) records. First, we fused multiple entropies, i.e., spectral entropy, ...
متن کامل