Finding Detours is Fixed-Parameter Tractable

نویسندگان

  • Ivona Bezáková
  • Radu Curticapean
  • Holger Dell
  • Fedor V. Fomin
چکیده

We consider the following natural “above guarantee” parameterization of the classical Longest Path problem: For given vertices s and t of a graph G, and an integer k, the problem Longest Detour asks for an (s, t)-path in G that is at least k longer than a shortest (s, t)-path. Using insights into structural graph theory, we prove that Longest Detour is fixed-parameter tractable (FPT) on undirected graphs and actually even admits a single-exponential algorithm, that is, one of running time exp(O(k)) ·poly(n). This matches (up to the base of the exponential) the best algorithms for finding a path of length at least k. Furthermore, we study the related problem Exact Detour that asks whether a graph G contains an (s, t)-path that is exactly k longer than a shortest (s, t)-path. For this problem, we obtain a randomized algorithm with running time about 2.746 · poly(n), and a deterministic algorithm with running time about 6.745 · poly(n), showing that this problem is FPT as well. Our algorithms for Exact Detour apply to both undirected and directed graphs. 1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the computational complexity of finding a minimal basis for the guess and determine attack

Guess-and-determine attack is one of the general attacks on stream ciphers. It is a common cryptanalysis tool for evaluating security of stream ciphers. The effectiveness of this attack is based on the number of unknown bits which will be guessed by the attacker to break the cryptosystem. In this work, we present a relation between the minimum numbers of the guessed bits and uniquely restricted...

متن کامل

The Parameterized Complexity of some Permutation Group Problems

In this paper we study the parameterized complexity of two well-known permutation group problems which are NP-complete. • Given a permutation group G = 〈S〉 ≤ Sn and a parameter k, find a permutation π ∈ G such that |{i ∈ [n] | π(i) 6= i}| ≥ k. This generalizes the NP-complete problem of finding a fixed-point free permutation in G [CW10, Lub81] (this is the case when k = n). We show that this pr...

متن کامل

The Parameterized Complexity of Regular Subgraph Problems and Generalizations

We study variants and generalizations of the problem of finding an r-regular subgraph (where r ≥ 3) in a given graph by deleting at most k vertices. Moser and Thilikos (2006) have shown that the problem is fixed-parameter tractable (FPT) if parameterized by (k, r). They asked whether the problem remains fixed-parameter tractable if parameterized by k alone. We answer this question negatively: w...

متن کامل

On Fixed-Parameter Tractability of Some Routing Problems

Disjoint Paths is the problem of finding paths between given pairs of terminals in a graph such that no vertices are shared between paths. We analyze fixed-parameter tractability of several new Disjoint Paths-like routing problems motivated by congestion control in computer networks. In one model we are interested in finding paths between k pairs of terminals such that the first edge of each pa...

متن کامل

Parameterized Complexity of the Smallest Degree-Constrained Subgraph Problem

In this paper we study the problem of finding an induced subgraph of size at most k with minimum degree at least d for a given graph G, from the parameterized complexity perspective. We call this problem Minimum Subgraph of Minimum Degree ≥d (MSMDd). For d = 2 it corresponds to finding a shortest cycle of the graph. Our main motivation to study this problem is its strong relation to Dense k-Sub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017